Skip to main content

Phosphorous-Based Titania Nanoparticles for the Photocatalytic Abatement of VOCs

  • Chapter
  • First Online:
Nanostructured Catalysts for Environmental Applications
  • 640 Accesses

Abstract

In this work, different TiO2-based systems were synthesized. Specifically, phosphorous was considered as nonmetal dopant into TiO2 structure of the photocatalysts. The doped samples were herein labeled as TiO2-P0.6, TiO2-P0.7, and TiO2-P3, where 0.6, 0.7, and 3 indicate the average atomic phosphorus content into each sample.

The physico-chemical properties of the samples were investigated by complementary techniques, including XRD, N2 physisorption at −196 °C, FESEM, EDX, XPS, and (DR)UV-Vis spectroscopies. Then, the samples were tested for the total oxidation of ethylene under two different sources: UVB (wavelength = 312 nm, intensity = 12 W m−2) and UVA (wavelength = 365 nm, intensity = 8 W m−2).

The results under UVB source have shown that the most promising catalyst is TiO2-P3 (TOF = 7.5 μmol h−1 g−1, TOS = 160 min) and a positive reactivity trend was observed: the higher the P-content, the higher the reactivity. On the other hand, under the UVA source, the most promising catalyst is TiO2-P0.6 (TOF = 21.3 μmol h−1 g−1, TOS = 160 min). In fact, the samples with higher P-contents decrease their performances at longer TOS, likely due to the surface deposition of carbon-like molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Council of the European Parliament, Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations, Off. J. Eur. Comm. L85/1–L85/22 (1999)

    Google Scholar 

  2. W.B. Li, J.X. Wang, H. Gong, Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 148, 81–87 (2010)

    Article  Google Scholar 

  3. S. Ojala, S. Pitkäaho, T. Laitinen, N. NiskalaKoivikko, R. Brahmi, J. Gaálová, L. Matejova, A. Kucherov, S. Päivärinta, C. Hirschmann, T. Nevanperä, M. Riihimäki, M. Pirilä, R.L. Keiski, Catalysis in VOC abatement. Top. Catal. 54, 1224–1256 (2011)

    Article  CAS  Google Scholar 

  4. E. Olsen, F. Nielsen, Predicting vapour pressures of organic compounds from their chemical structure for classification according to the VOC-directive and risk assessment in general. Molecules 6, 370–389 (2001)

    Article  CAS  Google Scholar 

  5. M.S. Kamla, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos. Environ. 140, 117–134 (2016)

    Article  Google Scholar 

  6. P. Doggali, Y. Teraoka, P. Mungse, I.K. Shah, S. Rayalu, N. Labhsetwar, Combustion of volatile organic compounds over Cu-Mn based mixed oxide type catalysts supported on mesoporous Al2O3, TiO2 and ZrO2. J. Mol. Catal. A Chem. 358, 23–30 (2012)

    Article  CAS  Google Scholar 

  7. J. Carpentier, J.F. Lamonier, S. Siffert, E.A. Zhilinskaya, A. Aboukas, Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene. Appl. Catal. A Gen. 234, 91–101 (2002)

    Article  CAS  Google Scholar 

  8. F.I. Khan, A.K. Ghoshal, Removal of volatile organic compounds from polluted air. J. Loss Prev. Process Ind. 13, 527–545 (2000)

    Article  Google Scholar 

  9. G.S.P. Soylu, Z. Özçelik, I. Boz, Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite. Chem. Eng. J. 162, 380–387 (2010)

    Article  CAS  Google Scholar 

  10. B. Ozturk, D. Yilmaz, Absorptive removal of volatile organic compounds from flue gas streams. Process Saf. Environ. Prot. 84, 391–398 (2006)

    Article  CAS  Google Scholar 

  11. M. Amann, M. Lutz, The revision of the air quality legislation in the European Union related to ground-level ozone. J. Hazard. Mater. 78, 41–62 (2000)

    Article  CAS  Google Scholar 

  12. P. Lakshmanan, L. Delannoy, V. Richard, C. Méthivier, C. Potvin, C. Louis, Total oxidation of propene over Au/xCeO2-Al2O3 catalysts: influence of the CeO2 loading and the activation treatment. Appl. Catal. B Environ. 96, 117–125 (2010)

    Article  CAS  Google Scholar 

  13. M.J. Molina, F.S. Rowland, Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom-Catalysed Destruction of Ozone (Academic Press, New York, 1973)

    Google Scholar 

  14. J. Peng, S. Wang, Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Appl. Catal. B Environ. 73, 282–291 (2007)

    Article  CAS  Google Scholar 

  15. B.J. Finlayson-Pitts, J.N. Pitts, Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 276, 1045–1052 (1997)

    Article  CAS  Google Scholar 

  16. H. Rodhe, A comparison of the contribution of various gases to the greenhouse effect. Science 248, 1217–1219 (1990)

    Article  CAS  Google Scholar 

  17. M. Drobek, A. Figoli, S. Santoro, N. Navascués, J. Motuzas, S. Simone, C. Algieri, N. Gaeta, L. Querze, A. Trotta, G. Barbieri, R. Mallada, A. Julbe, E. Drioli, PVDF-MFI mixed matrix membranes as VOCs adsorbers. Micropor. Mesopor. Mater. 207, 126–133 (2015)

    Article  CAS  Google Scholar 

  18. S. Scirè, L.F. Liotta, Supported gold catalysts for the total oxidation of volatile organic compounds. Appl. Catal. B Environ. 125, 222–246 (2012)

    Article  Google Scholar 

  19. R. Koppmann, Volatile Organic Compounds in the Atmosphere (Wiley Online Library, Hoboken, 2007)

    Book  Google Scholar 

  20. EPA, United Stated Environmental Protection Agency, Indoor Air Quality (IAQ), https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality

  21. M. Magureanu, N.B. Mandache, P. Eloy, E.M. Gaigneaux, V.I. Parvulescu, Plasma-assisted catalysis for volatile organic compounds abatement. Appl. Catal. B Environ. 61, 12–20 (2005)

    Article  CAS  Google Scholar 

  22. A.H. Wani, R.M.R. Branion, A.K. Lau, Biofiltration: a promising and cost-effective control technology for odors, VOCs and air toxics. J. Environ. Sci. Heal. Part A Environ. Sci. Eng. Toxicol. 32, 2027–2055 (1997)

    Google Scholar 

  23. M. Hussain, N. Russo, G. Saracco, Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chem. Eng. J. 166, 138–149 (2011)

    Article  CAS  Google Scholar 

  24. M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis. Chem. Rev. 93, 341–357 (2002)

    Article  Google Scholar 

  25. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  26. A. Hagfeldt, M. Grätzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)

    Article  CAS  Google Scholar 

  27. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  28. M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011)

    Article  CAS  Google Scholar 

  29. Z. Zhang, S. Brown, J.B.M. Goodall, X. Weng, K. Thompson, K. Gong, S. Kellici, R.J.H. Clark, J.R.G. Evans, J.A. Darr, Direct continuous hydrothermal synthesis of high surface area nanosized titania. J. Alloys Compd. 476, 451–456 (2009)

    Article  CAS  Google Scholar 

  30. P. Zhang, Y. Yu, E. Wang, J. Wang, J. Yao, Y. Cao, Structure of nitrogen and zirconium co-doped titania with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 6, 4622–4629 (2014)

    Article  CAS  Google Scholar 

  31. M.D. Hernández-Alonso, J.M. Coronado, B. Bachiller-Baeza, M. Fernández-García, J. Soria, Influence of structural and surface characteristics of Ti 1-xZrxO2 nanoparticles on the photocatalytic degradation of methylcyclohexane in the gas phase. Chem. Mater. 19, 4283–4291 (2007)

    Article  Google Scholar 

  32. W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, Efficient degradation of toxic organic pollutants with Ni2O 3/TiO2-xBx under visible irradiation. J. Am. Chem. Soc. 126, 4782–4783 (2004)

    Article  CAS  Google Scholar 

  33. Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and iron (III). J. Phys. Chem. C 111, 10618–10623 (2007)

    Article  CAS  Google Scholar 

  34. S. Shamaila, A.K.L. Sajjad, F. Chen, J.L. Zhang, Synthesis and characterization of mesoporous-TiO2 with enhanced photocatalytic activity for the degradation of chloro-phenol. Mater. Res. Bull. 45, 1375–1382 (2010)

    Article  CAS  Google Scholar 

  35. M. Piumetti, F.S. Freyria, M. Armandi, F. Geobaldo, E. Garrone, B. Bonelli, Fe- and V-doped mesoporous titania prepared by direct synthesis: characterization and role in the oxidation of AO7 by H2O2 in the dark. Catal. Today 227, 71–79 (2014)

    Article  CAS  Google Scholar 

  36. N. Musselwhite, G.A. Somorjai, Investigations of structure sensitivity in heterogeneous catalysis: from single crystals to monodisperse nanoparticles. Top. Catal. 56, 1277–1283 (2013)

    Article  CAS  Google Scholar 

  37. R.A. Van Santen, Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2009)

    Article  Google Scholar 

  38. G. Li, L. Li, J. Boerio-Goates, B.F. Woodfield, High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 127, 8659–8666 (2005)

    Article  CAS  Google Scholar 

  39. B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A Chem. 216, 179–182 (2010)

    Article  CAS  Google Scholar 

  40. L.P. Childs, D.F. Ollis, Is photocatalysis catalytic? J. Catal. 66, 383–390 (1980)

    Article  CAS  Google Scholar 

  41. G. Li, C.P. Richter, R.L. Milot, L. Cai, C.A. Schmuttenmaer, R.H. Crabtree, G.W. Brudvig, V.S. Batista, Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. J. Chem. Soc. Dalton Trans. 45, 10078–10085 (2009)

    Article  Google Scholar 

  42. J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)

    Article  CAS  Google Scholar 

  43. D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, Photocatalytic degradation for environmental applications—a review. J. Chem. Technol. Biotechnol. 77, 102–116 (2002)

    Article  CAS  Google Scholar 

  44. R.R. Guimaraes, A.L.A. Parussulo, K. Araki, Impact of nanoparticles preparation method on the synergic effect in anatase/rutile mixtures. Electrochim. Acta 222, 1378–1386 (2016)

    Article  CAS  Google Scholar 

  45. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with imageJ. Biophoton. Int. 11, 36–41 (2004)

    Google Scholar 

  46. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, 1992)

    Google Scholar 

  47. M.M. Kumar, S. Badrinarayanan, M. Sastry, Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358, 122–130 (2000)

    Article  CAS  Google Scholar 

  48. Y.D. Hou, X.Z. Fu, X.X. Wang, X.C. Wang, X.F. Chen, Z.X. Ding, L. Wu, N-doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation. Chemosphere 72, 414–421 (2008)

    Article  CAS  Google Scholar 

  49. S. Begin, G. Bertrand, F. Toma, O. Barres, C. Coddet, C. Meunier, D. Klein, Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying. Appl. Catal. B Environ. 68, 74–84 (2006)

    Article  Google Scholar 

  50. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 1–12 (2016)

    Article  CAS  Google Scholar 

  51. S. Wang, L. Pan, J.J. Song, W. Mi, J.J. Zou, L. Wang, X. Zhang, Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 137, 2975–2983 (2015)

    Article  CAS  Google Scholar 

  52. S. Futamura, H. Einaga, H. Kabashima, L.Y. Hwan, Synergistic effect of silent discharge plasma and catalysts on benzene decomposition. Catal. Today 89, 89–95 (2004)

    Article  CAS  Google Scholar 

  53. J.C. Yu, L. Zhang, Z. Zheng, J. Zhao, Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15, 2280–2286 (2003)

    Article  CAS  Google Scholar 

  54. M. Dosa, M. Piumetti, S. Bensaid, T. Andana, C. Galletti, D. Fino, N. Russo, Photocatalytic abatement of volatile organic compounds by TiO2 nanoparticles doped with either phosphorous or zirconium. Materials 12, 2121 (2019)

    Article  CAS  Google Scholar 

  55. E. Wang, T. He, L. Zhao, Y. Chen, Y. Cao, Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J. Mater. Chem. 21, 144–150 (2011)

    Article  CAS  Google Scholar 

  56. F. Freyria, M. Compagnoni, N. Ditaranto, I. Rossetti, M. Piumetti, G. Ramis, B. Bonelli, Pure and Fe-doped mesoporous titania catalyse the oxidation of acid orange 7 by H2O2 under different illumination conditions: Fe doping improves photocatalytic activity under simulated solar light. Catalysts 7, 213 (2017)

    Article  Google Scholar 

  57. L. Lin, W. Lin, J.L. Xie, Y.X. Zhu, B.Y. Zhao, Y.C. Xie, Photocatalytic properties of phosphor-doped titania nanoparticles. Appl. Catal. B Environ. 75, 52–58 (2007)

    Article  CAS  Google Scholar 

  58. S. Guo, S. Han, M. Haifeng, C. Zeng, Y. Sun, B. Chi, J. Pu, J. Li, Synthesis of phosphorus-doped titania with mesoporous structure and excellent photocatalytic activity. Mater. Res. Bull. 48, 3032–3036 (2013)

    Article  CAS  Google Scholar 

  59. J.C.-S. Wu, C.H. Chen, A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. J. Photochem. Photobiol. A Chem. 163, 509–515 (2004)

    Article  CAS  Google Scholar 

  60. K. Wilke, H.D. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A Chem. 121, 49–53 (1999)

    Article  CAS  Google Scholar 

  61. J. Reszczyńska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B Environ. 163, 40–49 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Piumetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dosa, M., Piumetti, M., Bensaid, S., Russo, N. (2021). Phosphorous-Based Titania Nanoparticles for the Photocatalytic Abatement of VOCs. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-58934-9_7

Download citation

Publish with us

Policies and ethics