Skip to main content

Advertisement

Log in

A Comparative Study of 4-Methylphenol Hydrodeoxygenation Over High Surface Area MoP and Ni2P

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Unsupported, high surface area MoP and Ni2P catalysts were synthesized by adding citric acid (CA) to solutions of ammonium heptamolybdate and diammonium hydrogen phosphate or nickel nitrate and diammonium hydrogen phosphate, respectively, followed by drying (397 K), calcination (773 K), and reduction in H2 (923 K). The addition of CA increased the surface area, decreased the particle size, and increased the CO uptake of the MoP and Ni2P catalysts. At 623 K and 4.4 MPa, the Ni2P was 2.3 times more active than the MoP on a mass basis and 6 times more active on a site basis for the hydrodeoxygenation of 4-methylphenol. However, the Ni2P catalysts deactivated due to non-selective carbon deposition on the catalyst surface. Oxidation was excluded as a potential cause of deactivation over the Ni2P catalysts. The rate of deactivation was well described by an exponential decay law. Deactivation was eliminated by operation at higher H2 pressures (5.3 and 6.1 MPa) but the hydrogenation selectivity of the Ni2P increased at these conditions. No deactivation was observed over the MoP catalysts at the conditions of the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de MM, Groeneveld MJ, Kersten SRA, Geantet C, Toussaint G, Way NWJ, Schaverien CJ, Hogendoorn KJA (2011) Energy Environ Sci 4:985

    Article  Google Scholar 

  2. Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Ind Eng Chem Res 48:10324

    Article  CAS  Google Scholar 

  3. Furimsky E (2000) Appl Catal A 199:147

    Article  CAS  Google Scholar 

  4. Bunch AY, Ozkan US (2002) J Catal 206:177

    Article  CAS  Google Scholar 

  5. Yang YQ, Tye CT, Smith KJ (2008) Catal Commun 9:1364

    Article  CAS  Google Scholar 

  6. Wang W, Yang Y, Bao J, Luo H (2009) Catal Commun 11:100

    Article  Google Scholar 

  7. Whiffen VML, Smith KJ, Straus SK (2012) Appl Catal A 419–420:111

    Google Scholar 

  8. Abu II, Smith KJ (2006) J Catal 241:356

    Article  CAS  Google Scholar 

  9. Oyama ST, Wang X, Requejo FG, Sato T, Yoshimura Y (2002) J Catal 209:1

    Article  CAS  Google Scholar 

  10. Yang S, Liang C, Prins R (2006) J Catal 241:465

    Article  CAS  Google Scholar 

  11. Li K, Wang R, Chen J (2011) Energy Fuels 25:854

    Article  CAS  Google Scholar 

  12. Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305

    Article  CAS  Google Scholar 

  13. Whiffen VML, Smith KJ (2010) Energy Fuels 24:4728

    Article  CAS  Google Scholar 

  14. Bowker RH, Smith MC, Pease ML, Slenkamp KM, Kovarik L, Bussell ME (2011) ACS Catal 1:917

    Article  CAS  Google Scholar 

  15. Li D, Bui P, Zhao HY, Oyama ST, Dou T, Shen ZH (2012) J Catal 290:1

    Article  CAS  Google Scholar 

  16. Wang R, Smith KJ (2009) Appl Catal A 361:18

    Article  CAS  Google Scholar 

  17. Stinner C, Prins R, Weber T (2000) J Catal 191:438

    Article  CAS  Google Scholar 

  18. Wang R, Smith KJ (2010) Appl Catal A 380:149

    Article  CAS  Google Scholar 

  19. Ma TS, Rittner RC (1979) Modern organic elemental analysis. Marcel Dekker, Inc, New York, p 518

    Google Scholar 

  20. Oyama ST, Wang X, Lee Y-, Chun W- (2004) J Catal 221:263

    Article  CAS  Google Scholar 

  21. Cheng R, Shu Y, Li L, Zheng M, Wang X, Wang A, Zhang T (2007) Appl Catal A 316:160

    Article  CAS  Google Scholar 

  22. Yoshimura Y, Sato T, Shimada H, Matsubayashi N, Nishijima A (1991) Appl Catal 73:55

    Article  CAS  Google Scholar 

  23. Wang H, Shu Y, Zheng M, Zhang T (2008) Catal Lett 124:219

    Article  CAS  Google Scholar 

  24. Lee Y, Shu Y, Oyama ST (2007) Appl Catal A 322:191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Science and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. The authors also wish to thank Bradford Ross from the Bioimaging Facility in the Department of Botany at the University of British Columbia for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiffen, V.M.L., Smith, K.J. A Comparative Study of 4-Methylphenol Hydrodeoxygenation Over High Surface Area MoP and Ni2P. Top Catal 55, 981–990 (2012). https://doi.org/10.1007/s11244-012-9883-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9883-2

Keywords

Navigation