Skip to main content
Log in

Aromatic Transformations Over Mesoporous ZSM-5: Advantages and Disadvantages

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic behavior of mesoporous ZSM-5 was investigated in toluene disproportionation, toluene alkylation with isopropyl alcohol, and p-xylene alkylation with isopropyl alcohol to understand the effect of the presence of mesopores. Three ZSM-5 zeolites (conventional one and two mesoporous differing in the mesopore volume) having similar Si/Al ratio were synthesized and characterized as for their acidity (internal and external) as well as their micropore/mesopore volume. No substantial differences among three samples were observed as for the type and concentration of Brønsted and Lewis acid sites as well as their location in zeolite channels or on external surface of zeolite crystals. Conversions of toluene and p-xylene increased with increasing volume of mesopores in ZSM-5 zeolite while the selectivity to individual products depended on the type of reaction. In general, selectivity to sum of xylenes in toluene disproportionation, sum of isopropyltoluenes in toluene alkylation and to 1-isopropyl-2,5-dimethylbenzene in p-xylene alkylation increased due to a shorter contact time molecules spent in mesoporous ZSM-5 catalysts. In contrast, para-selectivity decreased as diffusion pathways were shorten due to the presence of mesopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Čejka J, Wichterlová B (2002) Catal Rev 44:375

    Article  Google Scholar 

  2. Perego C, Ingallina P (2002) Catal Today 73:3

    Article  CAS  Google Scholar 

  3. Perego C, Ingallina P (2004) Green Chem 6:274

    Article  CAS  Google Scholar 

  4. Jin H, Jiang N, Oh SM, Park SE (2009) Top Catal 52:169

    Article  CAS  Google Scholar 

  5. Čejka J, Vondrová A, Wichterlová B, Vorbeck G, Fricke R (1994) Zeolites 14:147

    Article  Google Scholar 

  6. Wichterlová B, Žilková N, Čejka J (1996) Microporous Mater 6:405

    Article  Google Scholar 

  7. Jones CW, Zones SI, Davis ME (1999) Appl Catal A 181:289

    Article  CAS  Google Scholar 

  8. Tsai T, Liu S, Wang I (1999) Appl Catal A 181:355

    Article  CAS  Google Scholar 

  9. Iliyas A, Al-Khattaf S (2004) Appl Catal A 269:225

    Article  CAS  Google Scholar 

  10. Rabiu S, Al-Khattaf S (2008) Ind Eng Chem Res 47:39

    Article  CAS  Google Scholar 

  11. Žilková N, Bejblová M, Gil B, Zones SI, Burton AW, Chen CY, Musilová-Pavlačková Z, Košová G, Čejka J (2009) J Catal 266:79

    Article  Google Scholar 

  12. Al-Khattaf S, Musilová-Pavlačková Z, Ali MA, Čejka J (2009) Top Catal 52:140

    Article  CAS  Google Scholar 

  13. Musilová-Pavlačková Z, Kubů M, Burton AW, Zones SI, Bejblová M, Čejka J (2009) Catal Lett 131:393

    Article  Google Scholar 

  14. Zones SI, Chen CY, Corma A, Cheng MT, Kibby CL, Chan IY, Burton AW (2007) J Catal 250:41

    Article  CAS  Google Scholar 

  15. Corma A, Costa-Vaya VI, Díaz-Cabañas MJ, Llopis FJ (2002) J Catal 207:46

    Article  CAS  Google Scholar 

  16. Millini R, Perego C (2009) Top Catal 52:42

    Article  CAS  Google Scholar 

  17. Vermeieren W, Gilson JP (2009) Top Catal 52:1131

    Article  Google Scholar 

  18. Serrano DP, Aguado J, Morales G, Rodriguez JM, Peral A, Thommes M, Epping JD, Chmelka BF (2009) Chem Mater 21:641

    Article  CAS  Google Scholar 

  19. Corma A, Llopis FJ, Martínez C, Sastre G, Valencia S (2009) J Catal 268:9

    Article  CAS  Google Scholar 

  20. Coronas J (2010) Chem Eng J 156:236

    Article  CAS  Google Scholar 

  21. Kloetstra KR, van Bekkum H, Jansen J (1997) Chem Commun 2281

  22. Huang L, Guo W, Deng P, Xue Z, Li Q (2000) J Phys Chem B 104:2817

    Article  CAS  Google Scholar 

  23. Prokešová P, Mintova S, Čejka J, Bein T (2003) Mater Sci Eng C 23:1001

    Article  Google Scholar 

  24. Liu Y, Zhang W, Pinnavaia TJ (2001) Angew Chem Int Ed 40:1255

    Article  CAS  Google Scholar 

  25. Groen JC, Moulijn JA, Perez-Ramirez J (2007) Ind Eng Chem Res 46:4193

    Article  CAS  Google Scholar 

  26. Perez-Ramirez J, Abello S, Bonilla A, Groen JC (2009) Adv Funct Mater 19:164

    Article  CAS  Google Scholar 

  27. Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Chem Soc Rev 37:2530

    Article  CAS  Google Scholar 

  28. Čejka J, Mintova S (2007) Catal Rev 49:457

    Google Scholar 

  29. Gil B, Mokrzycki L, Sulikowski B, Olejniczak Z, Walas S (2010) Catal Today 152(1–4):24

    Article  CAS  Google Scholar 

  30. Musilová-Pavlačková Z, Zones SI, Čejka J (2010) Top Catal 53:273

    Article  Google Scholar 

  31. Datka J, Sulikowski B, Gil B (1996) J Phys Chem 100:11242

    Article  CAS  Google Scholar 

  32. Danilina N, Krumeich F, Castelanelli SA, van Bokhoven JA (2010) J Phys Chem C 114:6640

    Article  CAS  Google Scholar 

  33. Sklenák S, Dědeček J, Li C, Wichterlová B, Gábová V, Sierka M, Sauer J (2009) Phys Chem Chem Phys 11:1237

    Article  Google Scholar 

  34. Katada N, Suzuki K, Noda T, Sastre G, Niwa M (2009) J Phys Chem C 113:19208

    Article  CAS  Google Scholar 

  35. Nachtigall P, Bludský O, Grajciar L, Nachtigallová D, Delgado MR, Areán CO (2009) Phys Chem Chem Phys 11:791

    Article  CAS  Google Scholar 

  36. Grajciar L, Areán CO, Pulido A, Nachtigall P (2010) Phys Chem Chem Phys 12:1497

    Article  CAS  Google Scholar 

  37. Gil B, Zones SI, Hwang SJ, Bejblová M, Čejka J (2008) J Phys Chem C 112:2997

    Article  CAS  Google Scholar 

  38. Gil B, Košová G, Čejka J (2010) Microporous Mesoporous Mater 129:256

    Article  CAS  Google Scholar 

  39. Makowski W, Gil B, Majda D (2008) Catal Lett 120:154

    Article  CAS  Google Scholar 

  40. Nachtigallová D, Vrbka L, Bludský O, Nachtigall P (2008) Phys Chem Chem Phys 10:4189

    Article  Google Scholar 

  41. Corma A, Fornes V, Forni L, Márquez F, Martínez-Triguero J, Moscotti D (1998) J Catal 179:451

    Article  CAS  Google Scholar 

  42. Zheng S, Heydenrych HR, Jentys A, Lercher JA (2002) J Phys Chem B 106:9552

    Article  CAS  Google Scholar 

  43. Christensen CH, Johannsen K, Schmidt I, Christensen CH (2003) J Am Chem Soc 125:13370

    Article  CAS  Google Scholar 

  44. Mirth G, Čejka J, Lercher JA (1993) J Catal 139:24

    Article  CAS  Google Scholar 

Download references

Acknowledgement

N.Ž. and J.Č. thank the Academy of Sciences of the Czech Republic for the financial support. S.E.P. thanks for financial support of Nano Center for Fine Chemical Fusion Technology from Industry and Energy Ministry of Commerce of Korea. The authors thank also Dr. L. Brabec and Dr. A. Zukal (J. Heyrovsky Institute) for recording SEM images and nitrogen isotherms, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Čejka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musilová, Z., Žilková, N., Park, SE. et al. Aromatic Transformations Over Mesoporous ZSM-5: Advantages and Disadvantages. Top Catal 53, 1457–1469 (2010). https://doi.org/10.1007/s11244-010-9606-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9606-5

Keywords

Navigation