Skip to main content
Log in

Synthesis optimization of mesoporous ZSM-5 through desilication-reassembly in the methanol-to-propylene reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Hierarchical H-ZSM-5 zeolites were synthesized using desilication and desilication-reassembly methods. The catalytic performance of the synthesized catalysts was studied in methanol-to-propylene in a fixed-bed reactor under atmospheric pressure, 480 °C and WHSV of 0.9 h−1. Response surface methodology based on the Box–Behnken design was employed to optimize the three important variables: NaOH/ZSM-5 molar ratio, CTAB/ZSM-5 molar ratio and time of reassembly for optimizing propylene selectivity. Physiochemical properties of the catalysts were studied by XRD, FE-SEM, BET, NH3-TPD, TGA and FT-IR tests. The significant increase in the external surface area, pore size distribution in the range of 2–6 nm and decrease in the Brønsted acidity for desilication-reassembly product were observed. The hierarchical pore system and modification of the acidity in addition to protecting the zeolite structure increased the useful lifetime of the catalyst, selectivity of propylene and P/E ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dolinskii SE (2011) Economically attractive technologies of deep conversion of associated petroleum gas. Russ J Gen Chem 81:2574–2593

    Article  CAS  Google Scholar 

  2. Xiang D, Yang S, Qian Y (2016) Techno-economic analysis and comparison of coal based olefins processes. Energy Convers Manage 110:33–41

    Article  CAS  Google Scholar 

  3. Pajaie HS, Taghizadeh M (2016) Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34. Reac Kinet Mech Cat 118:701–717

    Article  Google Scholar 

  4. Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, Deng F (2015) Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: finely tuning the acidic property. Fuel Process Technol 129:130–138

    Article  CAS  Google Scholar 

  5. Zhuang Y-Q, Gao X, Zhu Y-P, Luo Z-H (2012) CFD modeling of methanol to olefins process in a fixed-bed reactor. Powder Technol 221:419–430

    Article  CAS  Google Scholar 

  6. Liu L, Huang W, Gao Z, Yin L (2010) The dehydration of methanol to dimethyl ether over a novel slurry catalyst. Energy Sources A 32:1379–1387

    Article  CAS  Google Scholar 

  7. Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. J Catal 258:243–249

    Article  CAS  Google Scholar 

  8. Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H (2009) Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst. Catal Commun 10:1506–1509

    Article  CAS  Google Scholar 

  9. Rostamizadeh M, Yaripour F (2016) Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction. Fuel 181:537–546

    Article  CAS  Google Scholar 

  10. Lee Y-J, Kim Y-W, Viswanadham N, Jun K-W, Bae JW (2010) Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. Appl Catal A 374:18–25

    Article  CAS  Google Scholar 

  11. Zokaie M, Wragg DS, Grønvold A, Fuglerud T, Cavka JH, Lillerud KP, Swang O (2013) Unit cell expansion upon coke formation in a SAPO-34 catalyst: a combined experimental and computational study. Microporous Mesoporous Mater 165:1–5

    Article  CAS  Google Scholar 

  12. Conte M, Xu B, Davies TE, Bartley JK, Carley AF, Taylor SH, Khalid K, Hutchings GJ (2012) Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous Mesoporous Mater 164:207–213

    Article  CAS  Google Scholar 

  13. Müller S, Liu Y, Vishnuvarthan M, Sun X, van Veen AC, Haller GL, Sanchez-Sanchez M, Lercher JA (2015) Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. J Catal 325:48–59

    Article  Google Scholar 

  14. Losch P, Boltz M, Bernardon C, Louis B, Palčić A, Valtchev V (2016) Impact of external surface passivation of nano-ZSM-5 zeolites in the methanol-to-olefins reaction. Appl Catal A 509:30–37

    Article  CAS  Google Scholar 

  15. Qi R, Fu T, Wan W, Li Z (2017) Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction. Fuel Process Technol 155:191–199

    Article  CAS  Google Scholar 

  16. Pan F, Lu X, Zhu Q, Zhang Z, Yan Y, Wang T, Chen S (2014) A fast route for synthesizing nano-sized ZSM-5 aggregates. J Mater Chem A 2:20667–20675

    Article  CAS  Google Scholar 

  17. Zhou M, Wang F, Xiao W, Gao L, Xiao G (2016) The comparison of mesoporous HZSM-5 zeolite catalysts prepared by different mesoporous templates and their catalytic performance in the methanol to aromatics reaction. Reac Kinet Mech Cat 119:699–713

    Article  CAS  Google Scholar 

  18. Sadowska K, Wach A, Olejniczak Z, Kuśtrowski P, Datka J (2013) Hierarchic zeolites: zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. J Microporous Mesoporous Mater 167:82–88

    Article  CAS  Google Scholar 

  19. Bleken FL, Barbera K, Bonino F, Olsbye U, Lillerud KP, Bordiga S, Beato P, Janssens TVW, Svelle S (2013) Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons. J Catal 307:62–73

    Article  CAS  Google Scholar 

  20. Mentzel UV, Højholt KT, Holm MS, Fehrmann R, Beato P (2012) Conversion of methanol to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI: major differences in deactivation behavior. Appl Catal A 417–418:290–297

    Article  Google Scholar 

  21. Tao H, Yang H, Liu X, Ren J, Wang Y, Lu G (2013) Highly stable hierarchical ZSM-5 zeolite with intra-and inter-crystalline porous structures. Chem Eng J 225:686–694

    Article  CAS  Google Scholar 

  22. Hao K, Shen B, Wang Y, Ren J (2012) Influence of combined alkaline treatment and Fe–Ti-loading modification on ZSM-5 zeolite and its catalytic performance in light olefin production. J Ind Eng Chem 18:1736–1740

    Article  CAS  Google Scholar 

  23. Wang X, Wen M, Wang C, Ding J, Sun Y, Liu Y, Lu Y (2014) Microstructured fiber@HZSM-5 core–shell catalysts with dramatic selectivity and stability improvement for the methanol-to-propylene process. Chem Commun 50:6343–6345

    Article  CAS  Google Scholar 

  24. Wen M, Wang X, Han L, Ding J, Sun Y, Liu Y, Lu Y (2015) Monolithic metal-fiber@HZSM-5 core–shell catalysts for methanol-to-propylene. Microporous Mesoporous Mater 206:8–16

    Article  CAS  Google Scholar 

  25. Ding J, Zhang Z, Han L, Wang C, Chen P, Zhao G, Liu Y, Lu Y (2016) A self-supported SS-fiber@meso-HZSM-5 core–shell catalyst via caramel-assistant synthesis toward prolonged lifetime for the methanol-to-propylene reaction. RSC Adv 6:48387–48395

    Article  CAS  Google Scholar 

  26. Koo J-B, Jiang N, Saravanamurugan S, Bejblová M, Musilová Z, Čejka J, Park S-E (2010) Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. J Catal 276:327–334

    Article  CAS  Google Scholar 

  27. Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJ (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13:4416–4418

    Article  CAS  Google Scholar 

  28. Pavlačková Z, Košová G, Žilková N, Zukal A, Čejka J (2006) Formation of mesopores in ZSM-5 by carbon templating. Stud Surf Sci Catal 162:905–912

    Article  Google Scholar 

  29. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723

    Article  CAS  Google Scholar 

  30. Cho K, Cho HS, De Menorval L-C, Ryoo R (2009) Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem Mater 21:5664–5673

    Article  CAS  Google Scholar 

  31. Zhang Y, Zhu K, Duan X, Li P, Zhou X, Yuan W (2014) Synthesis of hierarchical ZSM-5 zeolite using CTAB interacting with carboxyl-ended organosilane as a mesotemplate. RSC Adv 4:14471–14474

    Article  CAS  Google Scholar 

  32. Narayanan S, Vijaya JJ, Sivasanker S, Kennedy LJ, Jesudoss SK (2015) Structural, morphological and catalytic investigations on hierarchical ZSM-5 zeolite hexagonal cubes by surfactant assisted hydrothermal method. Powder Technol 274:338–348

    Article  CAS  Google Scholar 

  33. Groen JC, Moulijn JA, Pérez-Ramírez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16:2121–2131

    Article  CAS  Google Scholar 

  34. Meunier FC, Verboekend D, Gilson J-P, Groen JC, Pérez-Ramírez J (2012) Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. J Microporous Mesoporous Mater 148:115–121

    Article  CAS  Google Scholar 

  35. Groen JC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez J (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360

    Article  CAS  Google Scholar 

  36. Verboekend D, Pérez Ramírez J (2011) Desilication mechanism revisited: highly mesoporous all-silica zeolites enabled through pore-directing agents. Chem-Eur J 17:1137–1147

    Article  CAS  Google Scholar 

  37. Verboekend D, Pérez-Ramírez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1:879–890

    Article  CAS  Google Scholar 

  38. Adem Z, Guenneau F, Springuel-Huet M-A, Gédéon A, Iapichella J, Cacciaguerra T, Galarneau A (2012) Diffusion properties of hexane in pseudomorphic MCM-41 mesoporous silicas explored by pulsed field gradient NMR. J Phys Chem C 116:13749–13756

    Article  CAS  Google Scholar 

  39. Galarneau A, Iapichella J, Bonhomme K, Di Renzo F, Kooyman P, Terasaki O, Fajula F (2006) Controlling the morphology of mesostructured silicas by pseudomorphic transformation: a route towards applications. Adv Funct Mater 16:1657–1667

    Article  CAS  Google Scholar 

  40. Tang Q, Xu H, Zheng Y, Wang J, Li H, Zhang J (2012) Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves. J Appl Catal A 413:36–42

    Article  Google Scholar 

  41. Khitev YP, Ivanova II, Kolyagin YG, Ponomareva OA (2012) Skeletal isomerization of 1-butene over micro/mesoporous materials based on FER zeolite. Appl Catal A 441:124–135

    Article  Google Scholar 

  42. Ordomsky VV, Ivanova II, Knyazeva EE, Yuschenko VV, Zaikovskii VI (2012) Cumene disproportionation over micro/mesoporous catalysts obtained by recrystallization of mordenite. J Catal 295:207–216

    Article  CAS  Google Scholar 

  43. Baş D, Boyacı İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Article  Google Scholar 

  44. Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol. J Nat Gas Sci Eng 22:260–269

    Article  CAS  Google Scholar 

  45. Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475

    Article  Google Scholar 

  46. Souza AS, dos Santos WNL, Ferreira SLC (2005) Application of Box–Behnken design in the optimisation of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry. Spectrochimica Acta B 60:737–742

    Article  Google Scholar 

  47. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types. Elsevier, Amsterdam

    Google Scholar 

  48. ASTM Standard Test Method D5758-01 (2011)

  49. Chandrasekar G, You K-S, Ahn J-W, Ahn W-S (2008) Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous Mesoporous Mater 111:455–462

    Article  CAS  Google Scholar 

  50. Groen JC, Peffer LA, Moulijn JA, Pérez Ramírez J (2005) Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chem-Eur J 11:4983–4994

    Article  CAS  Google Scholar 

  51. Lee J, Sohn K, Hyeon T (2001) Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. J Am Chem Soc 123:5146–5147

    Article  CAS  Google Scholar 

  52. Holland BT, Abrams L, Stein A (1999) Dual templating of macroporous silicates with zeolitic microporous frameworks. J Am Chem Soc 121:4308–4309

    Article  CAS  Google Scholar 

  53. Martin A, Berndt H (1994) Neutralization of HZSM-5 Brönsted acid sites by shaping with boehmite. React Kinet Catal Lett 52:405–411

    Article  CAS  Google Scholar 

  54. Yang Y, Sun C, Du J, Yue Y, Hua W, Zhang C, Shen W, Xu H (2012) The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catal Commun 24:44–47

    Article  Google Scholar 

  55. Xu A, Ma H, Zhang H, Weiyong D, Fang D (2013) Effect of boron on ZSM-5 catalyst for methanol to propylene conversion. Pol J Chem Technol 15:95–101

    CAS  Google Scholar 

  56. Jabbari A, Abbasi A, Zargarnezhad H, Riazifar MA (2017) Study on the effect of SiO2/Al2O3 ratio on the structure and performance of nano-sized ZSM-5 in methanol to propylene conversion. Reac Kinet Mech Cat. doi:10.1007/s11144-017-1162-6

    Google Scholar 

  57. Chang CD, Chu CT-W, Socha RF (1984) Methanol conversion to olefins over ZSM-5: I. Effect of temperature and zeolite SiO2Al2O3. J Catal 86:289–296

    Article  CAS  Google Scholar 

  58. Koekkoek AJJ, Xin H, Yang Q, Li C, Hensen EJM (2011) Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol. Microporous Mesoporous Mater 145:172–181

    Article  CAS  Google Scholar 

  59. Sazama P, Wichterlova B, Dedecek J, Tvaruzkova Z, Musilova Z, Palumbo L, Sklenak S, Gonsiorova O (2011) FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous Mesoporous Mater 143:87–96

    Article  CAS  Google Scholar 

  60. Hu S, Shan J, Zhang Q, Wang Y, Liu Y, Gong Y, Wu Z, Dou T (2012) Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite. Appl Catal A 445:215–220

    Article  Google Scholar 

  61. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K-P, Kolboe S, Bjørgen M (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128:14770–14771

    Article  CAS  Google Scholar 

  62. Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud K-P, Svelle S (2008) Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl Catal A 345:43–50

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Iranian Nanotechnology Initiative Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Taghizadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Taghizadeh, M. Synthesis optimization of mesoporous ZSM-5 through desilication-reassembly in the methanol-to-propylene reaction. Reac Kinet Mech Cat 122, 409–432 (2017). https://doi.org/10.1007/s11144-017-1204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1204-0

Keywords

Navigation