Skip to main content
Log in

Designing Heterogeneous Catalysts by Incorporating Enzyme-Like Functionalities into MOFs

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Everyone who works within the field of catalysis draws inspiration from the amazing functionality of nature’s catalysts, the enzymes. It is particularly the mild conditions that these catalysts are able to operate at and the selectivity that they demonstrate that make these materials dream targets for scientists involved in the art of synthesizing homogeneous and heterogeneous industrial catalysts. But enzymes also have their weak points; in particular their low thermal stability and their often too slow reaction rates for an economical industrial process are problems that have to be overcome. The obvious solution would be to copy the catalytic active center into a robust open framework. A key property of an enzyme is its selectivity; this property is partly regulated by steric constraints surrounding the catalytically active site. The microporous zeolite based catalysts in some cases show impressive selectivity based on the geometrical constraints imposed by the size and shape of the regular channels in these crystalline silicate and alumino-phosphate based structures, and enzyme-like properties have been claimed but the pure inorganic nature of the selective internal surface in these materials makes it impossible to mimic many important enzymatic properties. The new generation of microporous materials, Metal Organic Frameworks (MOFs) are hybrids of organic and inorganic structures. This dualistic nature offers an unprecedented flexibility in the possibility to incorporate both organic and metallic functional groups into the ordered crystalline lattice and thereby opening up for a much greater possibility to copy structural motifs known from enzymes into much simpler but also more stable open structures. Several groups are working on development of new catalysts by this approach. Here we will illustrate this approach with structures that mimic anhydrase and C–H activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Benkovic SJ, Hammes-Schiffer S (2003) Science 301:1196

    Article  CAS  Google Scholar 

  2. Christensen CH (2008) Private communication

  3. Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR (1965) Nature 206:757

    Article  CAS  Google Scholar 

  4. Wang J, Dauter M, Alkire R, Joachimiak A, Dauter Z (1254) Acta Crystallogr D Biol Crystallogr D63:1254

    Google Scholar 

  5. Fischer E (1894) Ber Deutsch Chem Ges 27:3189

    Article  CAS  Google Scholar 

  6. Arstad B, Kolboe S (2001) J Am Chem Soc 123:8137

    Article  CAS  Google Scholar 

  7. Svelle S, Olsbye U, Lillerud K-P, Kolboe S, Bjorgen M (2006) J Am Chem Soc 128:5618

    Article  CAS  Google Scholar 

  8. Boronat M, Martinez-Sanchez C, Law D, Corma A (2008) J Am Chem Soc 130:16316

    Article  CAS  Google Scholar 

  9. Iverson TM, Alber BE, Kisker C, Ferry JG, Rees DC (2000) Biochemistry 39:9222

    Article  CAS  Google Scholar 

  10. Hafizovic Cavka J, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) J Am Chem Soc 130:13850

    Article  CAS  Google Scholar 

  11. Ferey G (2008) Chem Soc Rev 37:191

    Article  CAS  Google Scholar 

  12. Li H, Eddaoudi M, O’Keeffe M, Yaghi M (1999) Nature 402:276

    Article  CAS  Google Scholar 

  13. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148

    Article  CAS  Google Scholar 

  14. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) Science 309:2040

    Article  CAS  Google Scholar 

  15. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469

    Article  CAS  Google Scholar 

  16. Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M, Yaghi OM (2009) Chem Soc Rev 38:1257

    Article  CAS  Google Scholar 

  17. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen SBT, Hupp JT (2009) Chem Soc Rev 38:1450

    Article  CAS  Google Scholar 

  18. Navarro JAR, Barea E, Salas JM, Masciocchi N, Galli S, Sironi A, Ania CO, Parra JB (2006) Inorg Chem 45:2397

    Article  CAS  Google Scholar 

  19. Llabres i Xamena FX, Abad A, Corma A, Garcia H (2007) J Catal 250:294

    Article  CAS  Google Scholar 

  20. Ma L, Abney C, Lin W (2009) Chem Soc Rev 38:1248

    Article  CAS  Google Scholar 

  21. Lillerud K-P, Tilset M, Olsbye U, Szeto KC, Bjoergen M, Kongshaug KO, Bordiga S, Hafizovic J, Krivokapic A, Jakobsen S (2007) PCT Int Appl WO 2007007113 A2 20070118

  22. Balasubramanian R, Rosenzweig AC (2007) Acc Chem Res 40:573

    Article  CAS  Google Scholar 

  23. Hakemian AS, Rosenzweig AC (2007) Annu Rev Biochem 76:223

    Article  CAS  Google Scholar 

  24. Ukaegbu UE, Rosenzweig AC (2009) Biochemistry 48:2207

    Article  CAS  Google Scholar 

  25. Sommerhalter M, Lieberman RL, Rosenzweig AC (2005) Inorg Chem 44:770

    Article  CAS  Google Scholar 

  26. Lieberman RL, Rosenzweig AC (2005) Nature 434:177

    Article  CAS  Google Scholar 

  27. Johansson L, Ryan OB, Romming C, Tilset M (2001) J Am Chem Soc 123:6579

    Article  CAS  Google Scholar 

  28. Johansson L, Ryan OB, Tilset M (1999) J Am Chem Soc 121:1974

    Article  CAS  Google Scholar 

  29. Gol’dshleger NF, Tyabin MB, Shilov AE, Shteinman AA (1969) Zh Fiz Khim 43:2174

    Google Scholar 

  30. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879

    Article  CAS  Google Scholar 

  31. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560

    Article  CAS  Google Scholar 

  32. Ahlquist M, Nielsen RJ, Periana RA, Goddard WA III (2009) J Am Chem Soc 131:17110

    Article  CAS  Google Scholar 

  33. Schroeck K, Schroeder F, Heyden M, Fischer RA, Havenith M (2008) Phys Chem Chem Phys 10:4732

    Article  CAS  Google Scholar 

  34. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) J Am Chem Soc 129:14176

    Article  CAS  Google Scholar 

  35. Szeto KC, Kongshaug KO, Jakobsen S, Tilset M, Lillerud KP (2008) Dalton Trans 2054

  36. Szeto KC, Lillerud KP, Tilset M, Bjorgen M, Prestipino C, Zecchina A, Lamberti C, Bordiga S (2006) J Phys Chem B 110:21509

    Article  CAS  Google Scholar 

  37. Szeto KC, Prestipino C, Lamberti C, Zecchina A, Bordiga S, Bjorgen M, Tilset M, Lillerud KP (2007) Chem Mater 19:211

    Article  CAS  Google Scholar 

  38. Millward AR, Yaghi OM (2005) J Am Chem Soc 127:17998

    Article  CAS  Google Scholar 

  39. Nelson AP, Farha OK, Mulfort KL, Hupp JT (2009) J Am Chem Soc 131:458

    Article  CAS  Google Scholar 

  40. Dutil F, Villeneuve C (2003) US Pat Appl Publ US 2003143719 A1 20030731

  41. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FMM (2008) Nature 452:56

    Article  CAS  Google Scholar 

  42. Vahrenkamp H (2007) Dalton Trans 4751

  43. Parkin G (2004) Chem Rev 104:699

    Article  CAS  Google Scholar 

  44. Brombacher H, Vahrenkamp H (2004) Inorg Chem 43:6042

    Article  CAS  Google Scholar 

  45. Rombach M, Brombacher H, Vahrenkamp H (2002) Eur J Inorg Chem 1:153

    Article  Google Scholar 

  46. Coates JH, Gentle GJ, Lincoln SF (1974) Nature 249:773

    Article  CAS  Google Scholar 

  47. Lim K, Read RJ, Chen CCH, Tempczyk A, Wei M, Ye D, Wu C, Dunaway-Mariano D, Herzberg O (2007) Biochemistry 46:14845

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Elin Grahn, Örebro University is acknowledged for her help with enzyme structures. This work was supported by The Research Council of Norway project no: 158552/431 and the European Commission (NMP4-CT-2006-033335 “MOFCAT”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Petter Lillerud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lillerud, K.P., Olsbye, U. & Tilset, M. Designing Heterogeneous Catalysts by Incorporating Enzyme-Like Functionalities into MOFs. Top Catal 53, 859–868 (2010). https://doi.org/10.1007/s11244-010-9518-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9518-4

Keywords

Navigation