Skip to main content
Log in

Mono-, Bi- and Multifunctional Single-Sites: Exploring the Interface Between Heterogeneous and Homogeneous Catalysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This mini-review contrasts the characteristics of traditional heterogeneous (solid) catalysts with those of homogeneous ones: the nature of the active sites in each case is very different, a fact well illustrated in ammonia synthesis. It is recalled that certain chemical transformations can be effected only with heterogeneous catalysts. It is also demonstrated that the scope for introducing multifunctional sites is greater with open-structured inorganic heterogeneous catalysts than with homogeneous ones: for example, TiIV ions distributed in a spatially isolated and accessible manner at the large areas of a nanoporous support smoothly convert cyclohexene to adipic acid (with H2O2) in a cascade of six consecutive reactions. A sharp distinction is drawn between nanocluster and nanoparticle “metal” catalysts, both electronic and geometric arguments being utilized to explain this difference. In the extreme case, a few (or single) metal atoms (supported on oxides) have been shown (see refs. Fu et al. Science 301:935, 2003 and Rim et al J Phys Chem C 113:10198, 2009) to be more important determinants of catalytic activity than nanoparticle metals such as Au and Pd. Recent advances in high-resolution electron microscopy is a key technique in this facet of catalysis. The merits of immobilizing single-site homogeneous catalysts and of creating atomically well-defined single-site heterogeneous ones on high-area solids are illustrated both from a practical viewpoint and also as a strategy for the design of new catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ward EP, Arslan I, Midgley PA, Bleloch A, Thomas JM (2005) Chem Commun 5805

  2. Fu Q, Saltzburg H, Flytzani-Stephanopoulos M (2003) Science 301:935

    Article  CAS  Google Scholar 

  3. Kwak JH, Hu JZ, Mei D, Yi CW, Kim DH, Peden CHF, Allard LF, Szanyi J (2009) Science 325:1670

    Article  CAS  Google Scholar 

  4. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331

    Article  CAS  Google Scholar 

  5. Kiely CJ (2010) Private communication to JMT, 18 Jan. 2010

  6. Thomas JM, Raja R, Gai PL, Grönbeck H, Hernandez-Garrido JC (2010) ChemCatChem 2:402

  7. Grönbeck H (2010) Private Communication to JMT, Jan. 2010

  8. Rim KT, Eom D, Liu L, Stolyarova E, Raitano JM, Chan SW, Flytzani-Stephanopoulos M, Flynn GW (2009) J Phys Chem C 113:10198

    Article  CAS  Google Scholar 

  9. Huang JH, Akita T, Faye J, Fujitani T, Takei T, Haruta M (2009) Angew Chem Int Ed 48:7862

    Article  CAS  Google Scholar 

  10. Si R, Zhai Y, Deng W, Allard LF, Overbury SH, Frenkel AI, Flytzani-Stephanopoulos M (2009) In: Abst. Pap. EuropaCat IX. Salamanca KN-17, pp 111

  11. Reetz MT, Breinbauer R, Wanninger K (1996) Tetrahedron Lett 37:4499

    Article  CAS  Google Scholar 

  12. Reetz MT, De Vries JG (2004) Chem Commun 1559

  13. Jansat S, Durand J, Favier I, Malbosc F, Pradel C, Teuma E, Gómez M (2009) ChemCatChem 1:244

    Article  CAS  Google Scholar 

  14. Reetz MT (2009) Private communication to JMT, September 2009

  15. Andrews SP, Stepan AF, Tanaka H, Ley SV, Smith MD (2005) Adv Synth Catal 347:647

    Article  CAS  Google Scholar 

  16. Thomas JM, Adams RD, Boswell EM, Captain B, Grönbeck H, Raja R (2008) Faraday Discuss 138:301

    Article  Google Scholar 

  17. Thomas JM (2008) J Chem Phys 128, art. no. 182502

  18. Janssens TVW, Clausen BS, Hvolbaek B, Falsig H, Christensen CH, Bligaard T, Norskov JK (2007) Top Catal 44:15

    Article  CAS  Google Scholar 

  19. Heiz U, Landman U (eds) (2008) Nanocatalysis. Springer, Berlin

    Google Scholar 

  20. Li ZY, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Nature 451:46

    Article  CAS  Google Scholar 

  21. Voit B (2006) Angew Chem Int Ed 45:4238

    Article  CAS  Google Scholar 

  22. Sato K, Aoki M, Noyori R (1998) Science 281:1646

    Article  CAS  Google Scholar 

  23. Deng YQ, Ma ZF, Wang K, Chen J (1999) Green Chem 1:275

    Article  CAS  Google Scholar 

  24. Lee SO, Raja R, Harris KDM, Thomas JM, Johnson BFG, Sankar G (2003) Angew Chem Int Ed 42:1520

    Article  CAS  Google Scholar 

  25. Raja R, Thomas JM (2008) Solid State Sci 8:326

    Article  Google Scholar 

  26. Thomas JM (2010) ChemCatChem 2:127

    Article  CAS  Google Scholar 

  27. Iwamoto M, Kosugi Y (2007) J Phys Chem C 111:13

    Article  CAS  Google Scholar 

  28. Taoufik M, Leroux E, Shivolle-Cazat J, Basset JM (2007) Angew Chem Int Ed 46:7202

    Article  CAS  Google Scholar 

  29. Tanaka M, Itadani A, Kuroda Y, Iwamoto M (2009) In: Abst. Pap. EuropaCat IX. Salamanca, O2-13, pp 129

  30. van Leeuwen PWNM (2004) Homogeneous catalysis. Kluwer, Dordrecht

  31. Zambelli T, Ertl G, Frost J, Winterlin J (1996) Phys Rev Lett 76:795

    Article  CAS  Google Scholar 

  32. Dahl S, Logadotter A, Egeberg RC, Lansen JH, Chorkendorff I, Jörnqvist E, Norskov JK (1999) Phys Rev Lett 83:1814

    Article  Google Scholar 

  33. Rostrup-Nielsen J, Norskov JK (2006) Top Catal 40:46

    Article  Google Scholar 

  34. Schrock RR (2005) Phil Trans R Soc A 363:959

    Article  CAS  Google Scholar 

  35. De Vos DE, Varkelecom IFJ, Jacobs PA (eds) (2000) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim

    Google Scholar 

  36. Corma A, Rey F, Thomas JM, Sankar G, Greaves GN, Cervilla A, Llopis E, Ribeira A (1996) Chem Commun 1613

  37. Berg JM, Holm RH (1985) J Am Chem Soc 107:925

    Article  CAS  Google Scholar 

  38. Bek D, Zilkova N, Dedecek J, Sedlacek J, Balcar H (2010) Top Catal 53:200

  39. Shakeri M, Engström K, Sandström AG, Bäckvall JE (2010) Adv Synth Catal (in press)

  40. Creemer JF, Helveg S, Hoveling GH, Ullmann S, Molenbroek AM, Sarro PM, Zandbergen HW (2008) Ultramicroscopy 108:993

    Article  CAS  Google Scholar 

  41. Thomas JM, Hernandez-Garrido JC, Raja R, Bell RG (2009) Phys Chem Chem Phys 11:2799

    Article  CAS  Google Scholar 

  42. Tada M, Iwasawa Y (2007) Coord Chem Rev 251:2702

    Article  CAS  Google Scholar 

  43. Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Ed 44:6456

    Article  CAS  Google Scholar 

  44. Thomas JM, Hernandez-Garrido JC, Bell RG (2009) Top Catal 52:1630

    Article  CAS  Google Scholar 

  45. Thomas JM, Raja R (2005) PNAS 102:13732

    Article  CAS  Google Scholar 

  46. Thomas JM, Raja R (2001) Chem Commun 675

  47. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246

    Article  CAS  Google Scholar 

  48. Tessonier J-P, Villa A, Majoulet O, Su DS, Schlögl R (2009) Angew Chem Int Ed 48:6543

    Article  Google Scholar 

  49. Raja R, Thomas JM, Dreyer V (2006) Catal Lett 110:179

    Article  CAS  Google Scholar 

  50. Thomas JM, Raja R (2006) Top Catal 40:3

    Article  CAS  Google Scholar 

  51. Raja R (2008) In: Harris KDM, Edwards PP (eds) Turning points in solid state, materials and surface science. RSC, Cambridge, p 623

    Google Scholar 

  52. Smith K, Musson A, De Boos GA (1998) J Org Chem 63:8448

    Article  CAS  Google Scholar 

  53. Smith K, Zhenhua Z, Hodgson PKG (1998) J Mol Catal A 134:121

    Article  CAS  Google Scholar 

  54. Smith K, El-Hiti GA, Bahzad D, Hammond MEW, Li Z, Siquet C (2000) J Chem Soc Perkin Trans 1:2745

    Article  Google Scholar 

  55. Raja R, Adams RD, Blom DA, Pearl WC Jr, Gianotti E, Thomas JM (2009) Langmuir 25:7200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Meurig Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J.M., Raja, R. Mono-, Bi- and Multifunctional Single-Sites: Exploring the Interface Between Heterogeneous and Homogeneous Catalysis. Top Catal 53, 848–858 (2010). https://doi.org/10.1007/s11244-010-9517-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9517-5

Keywords

Navigation