Skip to main content
Log in

Alkaline Modification of MCM-22 to a 3D Interconnected Pore System and its Application in Toluene Disproportionation and Alkylation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Modification of HMCM-22 zeolite by alkaline treatment was investigated by various characterization techniques and in toluene disproportionation and alkylation with isopropyl alcohol. This ‘desilication’ process led for mild alkaline concentrations (~0.10–0.20 M NaOH at 323 K for 45 min) to the partial destruction of the zeolite framework, but also to the formation of additional mesoporosity. Furthermore, the accessibility/availability of Lewis acid sites, investigated by d 3-acetonitrile and pyridine adsorption using FTIR spectroscopy, increased for these mild alkaline treatments, while the Brønsted acidity decreased. Higher alkaline concentrations (up to 0.50 M NaOH) led to a too severe framework and pore destruction and a decrease of both the Lewis and Brønsted acid site concentration. Decomposition and deconvolution of 29Si MAS-NMR spectra confirmed the Si extraction and partial framework destruction, since more Q3 SiOH groups were formed at the expense of the Q4 T-atoms in the framework. Furthermore, the T6 and T7 Si-atoms were preferentially extracted, which would indicate that an interconnection between the intralayer and the interlayer and/or outer surface is formed. The toluene conversion in its disproportionation reaction increased for the mildly treated sample, while the selectivity to xylene isomers (and cymene and n-propyltoluene isomers in the alkylation reaction with isopropyl alcohol) was similar to the thermodynamic equilibrium, suggesting that the reaction primarily occurs at outer surface cups of the HMCM-22 zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Čejka J, Wichterlová B (2002) Catal Rev 44:375

    Article  Google Scholar 

  2. Tsai TC, Liu SB, Wang I (1999) Appl Catal A 181:355

    Article  CAS  Google Scholar 

  3. Tosheva L, Valtchev VP (2005) Chem Mater 17:2494

    Article  CAS  Google Scholar 

  4. Čejka J, Mintova S (2007) Catal Rev 49:457

    Google Scholar 

  5. Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) J Am Chem Soc 122:7116

    Article  CAS  Google Scholar 

  6. Robson H, Lillerud KP (2001) Verified syntheses of zeolitic materials, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  7. Groen JC, Peffer LAA, Moulijn JA, Perez-Ramirez J (2005) Chem Eur J 11:4983

    Article  CAS  Google Scholar 

  8. Wang H, Pinnavaia TJ (2006) Angew Chem Int Ed 45:7603

    Article  CAS  Google Scholar 

  9. Meynen V, Cool P, Vansant EF (2007) Microporous Mesoporous Mater 104:26

    Article  CAS  Google Scholar 

  10. Prokešová P, Mintova S, Čejka J, Bein T (2003) Mater Sci Eng C 23:1001

    Article  Google Scholar 

  11. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK (1994) Science 264:1910

    Article  CAS  Google Scholar 

  12. Baerlocher Ch, McCusker LB (2008) Database of zeolite structures. http://www.iza-structure.org/databases

  13. Čejka J, Krejčí A, Žilková N, Kotrla J, Ernst S, Weber A (2002) Microporous Mesoporous Mater 53:121

    Article  Google Scholar 

  14. Asensi MA, Corma A, Martinez A (1996) J Catal 158:561

    Article  CAS  Google Scholar 

  15. Meima GR (1998) Cattech 3

  16. van Miltenburg A, Pawlesa J, Bouzga AM, Čejka J, Stöcker M (2008) In: Gedeon A, Massiani P, Babonneau F (eds) Zeolites and related materials: trends targets and challenges, vol 174. Elsevier, Amsterdam, p 937

    Chapter  Google Scholar 

  17. Pawlesa J, Bejblová M, Sommer L, Bouzga AM, Stöcker M, Čejka J (2007) In: Xu RR, Chen JS, Gao Z, Yan WF (eds) From zeolites to porous MOF materials—the 40th anniversary of international zeolite conference, studies in surface science and catalysis, vol 170. Elsevier, Amsterdam, p 610

    Chapter  Google Scholar 

  18. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  19. Bejblová M, Zones SI, Čejka J (2007) Appl Catal A 327:255

    Article  Google Scholar 

  20. Kolodziejski W, Zicovich Wilson C, Corma A (1995) J Phys Chem 99:7002

    Article  CAS  Google Scholar 

  21. Prokešová P, Žilková N, Mintova S, Bein T, Čejka J (2005) Appl Catal A 281:85

    Article  Google Scholar 

  22. Gil B, Zones SI, Hwang SJ, Bejblová M, Čejka J (2008) J Phys Chem C 112:2997

    Article  CAS  Google Scholar 

  23. Camblor MA, Corell C, Corma A, Diaz Cabanas MJ, Nicolopoulos S, Gonzalez Calbet JM, Vallet Regi M (1996) Chem Mater 8:2415

    Article  CAS  Google Scholar 

  24. Fan W, Wu P, Namba S, Tatsumi T (2006) J Catal 243:183

    Article  CAS  Google Scholar 

  25. Gaare K, Akporiaye D (1997) J Phys Chem B 101:48

    Article  CAS  Google Scholar 

  26. Camblor MA, Corma A, Diaz Cabanas MJ, Baerlocher C (1998) J Phys Chem B 102:44

    Article  CAS  Google Scholar 

  27. Koranyi TI, Nagy JB (2007) J Phys Chem C 111:2520

    Article  CAS  Google Scholar 

  28. Mussell RD, Nocera DG (1991) J Phys Chem 95:6919

    Article  CAS  Google Scholar 

  29. Marin C, Escobar J, Galvan E, Murrieta F, Zarate R, Vaca H (2005) Fuel Process Technol 86:391

    Article  CAS  Google Scholar 

  30. Bevilacqua M, Meloni D, Sini F, Monaci R, Montanari T, Busca G (2008) J Phys Chem C 112:9023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Marie Curie Research Training Networks (EU FP6 INDENS project no.: MRTN-CT-2004-005503) for financial support. The work of J. Čejka was also supported by the Grant Agency of the Czech Republic (203/08/0604). Linn Sommer from the University of Oslo is acknowledged for the measurement of the N2 sorption isotherms.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. van Miltenburg or J. Čejka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Miltenburg, A., Pawlesa, J., Bouzga, A.M. et al. Alkaline Modification of MCM-22 to a 3D Interconnected Pore System and its Application in Toluene Disproportionation and Alkylation. Top Catal 52, 1190–1202 (2009). https://doi.org/10.1007/s11244-009-9278-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9278-1

Keywords

Navigation