Skip to main content
Log in

Phosphate Adsorption Site on Zirconium Ion Modified MgAl-layered Double Hydroxides

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The structure of Zr modified MgAl layered double hydroxide (Zr–MgAl-LDH) was investigated by means of X-ray diffraction and Zr–K edge X-ray absorption experiments, and the mechanism of phosphate adsorption from phosphate-enriched seawater was considered. The Zr–MgAl-LDH consists of binary MgAl-LDH and amorphous ZrO2, which has a relation to its superior phosphate adsorption property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Puckett LJ (1995) Environ Sci Technol 29(9):408A

    Article  CAS  Google Scholar 

  2. Morse GK, Brett SW, Guy JA, Lester JN (1998) Sci Total Environ 212:69

    Article  CAS  Google Scholar 

  3. Makris KC, Harris WG, O’Connor GA, El-Shall H (2005) J Colloid Interface Sci 287:552

    Article  CAS  Google Scholar 

  4. Nowack B, Stone AT (2006) Water Res 40:2201

    Article  CAS  Google Scholar 

  5. Hongshao Z, Stanforth R (2001) Environ Sci Technol 35:4753

    Article  CAS  Google Scholar 

  6. Zeng L, Li X, Liu J (2004) Water Res 38:1318

    Article  CAS  Google Scholar 

  7. Chen Y-SR, Butler JN, Stumm W (1973) J Colloid Interface Sci 43:421

    Article  CAS  Google Scholar 

  8. Tanada S, Kabayama M, Kawasaki N, Sakiyama T, Nakamura T, Araki M, Tamura T (2003) J Colloid Interface Sci 257:135

    Article  CAS  Google Scholar 

  9. Okada K, Temuujin J, Kameshima Y, MacKenxie KJD (2003) Mater Res Bull 38:749

    Article  CAS  Google Scholar 

  10. Southam DC, Lewis TW, McFarlane AJ, Johnston JH (2004) Curr Appl Phys 4:355

    Article  Google Scholar 

  11. Nagamine S, Ueda T, Masuda I, Mori T, Sasaoka E, Joko I (2003) Ind Eng Chem Res 42:4748

    Article  CAS  Google Scholar 

  12. Xiong J, He Z, Mahmood Q, Liu D, Yang X, Islam E (2008) J Hazard Mater 152:211

    Article  CAS  Google Scholar 

  13. Golder AK, Samanta AN, Ray S (2006) Sep Purif Technol 52:102

    Article  CAS  Google Scholar 

  14. Chen J, Kong H, Wu D, Hu Z, Wang Z, Wang Y (2006) J Colloid Interface Sci 300:491

    Article  CAS  Google Scholar 

  15. Cheung KC, Venkitachalam TH (2000) Chemosphere 41:243

    Article  CAS  Google Scholar 

  16. Ugurlu A, Salman B (1998) Environ Int 24:911

    Article  CAS  Google Scholar 

  17. Sakadevan K, Bavor HJ (1998) Water Res 32:393

    Article  CAS  Google Scholar 

  18. Pardo MT, Guadalix ME, Garcia-Gonzalez MT (1992) Geoderma 54:275

    Article  CAS  Google Scholar 

  19. Biswas BK, Inoue K, Ghimire KN, Ohta S, Harada H, Ohto K, Kawakita H (2007) J Colloid Interface Sci 312:214

    Article  CAS  Google Scholar 

  20. Krishanan KA, Haridas A (2008) J Hazard Mater 152:527

    Article  Google Scholar 

  21. Parker LM, Milestone NB, Newman RH (1995) Ind Eng Chem Res 34:1196

    Article  CAS  Google Scholar 

  22. Tichit D, Das N, Coq B, Durand R (2002) Chem Mater 14:1530

    Article  CAS  Google Scholar 

  23. Ookubo A, Ooi K, Hayashi H (1993) Langmuir 9:1418

    Article  CAS  Google Scholar 

  24. Rives V, Ulibarri MA (1999) Coord Chem Rev 181:61

    Article  CAS  Google Scholar 

  25. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2007) J Colloid Interface Sci 313:53

    Article  CAS  Google Scholar 

  26. Gao Y, Mucci A (2003) Chem Geol 199:91

    Article  CAS  Google Scholar 

  27. Yao W, Millero FJ (1996) Environ Sci Technol 30:536

    Article  CAS  Google Scholar 

  28. Parida KM, Mohanty S (1998) J Colloid Interface Sci 199:22

    Article  CAS  Google Scholar 

  29. Millero F, Huang F, Zhu X, Liu X, Zhang J-Z (2001) Aquat Geochem 7:33

    Article  CAS  Google Scholar 

  30. Kanel JD, Morse JW (1978) Geochim Cosmochim Acta 42:1335

    Article  Google Scholar 

  31. Millero F, Huang F, Zhu X, Liu X, Zhang J-Z (2001) Aqua Geochem 7:33

    Article  CAS  Google Scholar 

  32. Khelifi O, Kozuki Y, Murakami H, Kurata K, Nishioka M (2002) Mar Pollut Bull 45:311

    Article  CAS  Google Scholar 

  33. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2005) J Colloid Interface Sci 290:45

    Article  CAS  Google Scholar 

  34. Tezuka S, Chitrakar R, Sakane K, Ooi K, Tomida T (2004) Bull Chem Soc Jpn 77:2101

    Article  CAS  Google Scholar 

  35. Yamaguchi NU, Okazaki M, Hashitani T (1999) J Colloid Interface Sci 209:386

    Article  CAS  Google Scholar 

  36. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2006) J Colloid Interface Sci 298:602

    Article  CAS  Google Scholar 

  37. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2006) J Colloid Interface Sci 297:426

    Article  CAS  Google Scholar 

  38. Velu S, Ramaswamy V, Ramani A, Chanda BM, Sivasanker S (1997) Chem Commun 2107

  39. Velu S, Sabde DP, Shah N, Sivasanker S (1998) Chem Mater 10:3451

    Article  CAS  Google Scholar 

  40. Das NN, Konar J, Mohanta MK, Srivastava SC (2004) J Colloid Interface Sci 270:1

    Article  CAS  Google Scholar 

  41. Intissar M, Jumas J-C, Besse J-P, Leroux F (2003) Chem Mater 15:4625

    Article  CAS  Google Scholar 

  42. Taguchi T, Ozawa T, Yashiro H (2005) Phy Scr T115:205

    Article  CAS  Google Scholar 

  43. Goh K-H, Lim T-T, Dong Z (2008) Water Res 42:1343

    Article  CAS  Google Scholar 

  44. Li P, Chen I-W, Penner-Hahn JE (1993) Phys Rev B 14:10063

    Article  Google Scholar 

  45. Xu J, Lind C, Wilkinson AP, Pattanaik S (2000) Chem Mater 12:3347

    Article  CAS  Google Scholar 

  46. Sideris PJ, Nielsen UG, Gan Z, Grey CP (2008) Science 321:113

    Article  CAS  Google Scholar 

  47. Yun SK, Pinnavaia TJ (1995) Chem Mater 7:348

    Article  CAS  Google Scholar 

  48. Tanabe K, Misono M, Ono Y, Hattori H. (1989) Acid and base centers: new solid acids and bases. Kodansha, Tokyo, pp 199–206

Download references

Acknowledgement

This research was partially supported by Grant-in-aid for the Global COE program, “International Center for Integrated Research and Advanced Education in Materials Science”, from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The Zr–K edge X-ray absorption experiments were carried out using a XAFS spectrometer equipped by Kyoto prefecture Collaboration of Regional Entities for the Advancement of Technological Excellence, Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroya Miyauchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyauchi, H., Yamamoto, T., Chitrakar, R. et al. Phosphate Adsorption Site on Zirconium Ion Modified MgAl-layered Double Hydroxides. Top Catal 52, 714–723 (2009). https://doi.org/10.1007/s11244-009-9209-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9209-1

Keywords

Navigation