Skip to main content
Log in

Oxidative Dehydrogenation of Light Alkanes on Supported Molten Alkali Metal Chloride Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Potential and limitations of molten alkali metal (Li, Na, and K) chlorides supported on Dy2O3/MgO were explored for the oxidative dehydrogenation of lower alkanes, such as ethane and propane. The catalysts have high activity and selectivity to olefins compared to conventional catalysts. Optimum performance is obtained with catalysts on which the alkali metal chloride phase is molten under reaction conditions. Lower chloride melting point correlates with higher selectivity. The high selectivity to ethene or propene is attributed to the high mobility of cations and anions, which facilitates desorption of alkene (limiting further oxidation) and the generation of spatially isolated hypochloride anions acting as the active sites for the primary C–H bond activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. Petrochemistry Activity Review. http://www.cefic.org,1999-2000

  2. Zehnder S (1998) Hydrocarbon process 77:59

    Google Scholar 

  3. Michalakos PM, Kung M, Jahan I, Kung HH (1993) J Catal 140:226

    Article  CAS  Google Scholar 

  4. Cavani F, Trifirò F (1995) Catal Today 24:307

    Article  CAS  Google Scholar 

  5. Watling TC, Deo G, Seshan K, Wachs IE, Lercher JA (1996) Catal Today 28:139

    Article  CAS  Google Scholar 

  6. Leveles L, Fuchs S, Seshan K, Lercher JA, Lefferts L (2002) Appl Catal A Gen 227:287

    Article  CAS  Google Scholar 

  7. Landau MV, Kaliya ML, Gutman A, Kogan LO, Herskowitz M, van den Oosterkamp PF (1997) In: Grasselli RK, Oyama ST, Gaffney AM, Lyons JE (eds) 3rd World Congress on Oxidation Catalysis. Stud Surf Sci Catal 110:315

  8. Herskowitz M, Landau MV, Kaliya ML (1997) DE 19502747C1, German patent

  9. Conway SJ, Wang DJ, Lunsford JH (1991) Appl Catl A Gen 79:L1

    Article  CAS  Google Scholar 

  10. Landau MV, Kaliya ML, Herskowitz M, van den Oosterkamp PF, Bocqué PSG (1996) Chemtech 26:24

    CAS  Google Scholar 

  11. Landau MV, Gutman A, Herskowitz M, Shuker R, Bitton Y, Mogilyansky DJ (2001) J Mol Catal A Chem 176:127

    Article  CAS  Google Scholar 

  12. Gaab S, Find J, Müller TE, Lercher JA (2007) Top Catal 2007. doi:10.1007/s11244-007-0320-x

  13. Tope B, Zhu Y, Lercher JA (2007) Catal Today 123:113

    Article  CAS  Google Scholar 

  14. Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki S (2000) Energy Fuels 14:899

    Article  CAS  Google Scholar 

  15. Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki S (1999) Catal Lett 59:173

    Article  CAS  Google Scholar 

  16. Cherginets VL, Rebrova TP (1999) Electrochim Acta 45:469

    Article  CAS  Google Scholar 

  17. Meyer RJ (ed) (1927) Gmelins Handbuch der Anorganischen Chemie, 8th edn. Verlag Chemie, Berlin, 20:119

  18. White WB, Keramidas VG (1972) Spectrochim Acta 28A:501

    Google Scholar 

  19. Osaka T, Shindo I (1984) Solid State Commun 51:421

    Article  CAS  Google Scholar 

  20. Ishil Y, Nagasaki T, Igawa N, Watanabe H, Ohno H (1991) J Am Ceram Soc 74:2324

    Article  Google Scholar 

  21. Nyquist RA, Putzig CL, Leugers MA (1997) Handbook of infrared and raman spectra atlas of inorganic compounds and organic salts: Raman spectr, vol 2. Academic Press, San Diego

    Google Scholar 

  22. Data on thermodynamic stability of LiOCl are found in NIST standard Reference Database 69 (2005) June: Nist Chemistry Web Book

  23. Leveles L (2002) Ph.D. thesis, Universiteit Twente

  24. Wang D, Rosynek MP, Lunsford JH (1995) J Catal 151:155

    Article  CAS  Google Scholar 

  25. Gaab S, Machli M, Find J, Grasselli RK, Lercher JA (2003) Top Catal 23:151

    Article  CAS  Google Scholar 

  26. Volkovich VA, Griffiths TR, Fray DJ, Thied R (2000) J Nucl Mater 282:152

    Article  CAS  Google Scholar 

  27. Volkovich VA, Griffiths TR, Fray DJ, Fields M (1997) J Chem Soc Faraday Trans 93:3819

    Article  CAS  Google Scholar 

  28. Leveles L, Seshan K, Lercher JA, Lefferts L (2003) J Catal 218:296

    Article  CAS  Google Scholar 

  29. Leveles L, Seshan K, Lercher JA, Lefferts L (2003) J Catal 218:307

    Article  CAS  Google Scholar 

  30. Ito T, Wang J, Lin CH, Lunsford JH (1985) J Am Chem Soc 107:5062

    Article  CAS  Google Scholar 

  31. Beretta A, Forzatti P, Ranzi E (1999) J Catal 184:469

    Article  CAS  Google Scholar 

  32. Yamauchi N, Miyoshi A, Kosaka K, Koshi M, Mitsui N, J Phy Chem A 103(199):2723

  33. Jitariu LC, Wang F, Hillier IH, Pilling MJ (2001) Phys Chem Chem Phys 3:2459

    Article  CAS  Google Scholar 

  34. Fox DB, Lee EH (1973) Chemtech 186

  35. Grasselli RK (2001) Top Catal 15:93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dipl.-Ing. FH X. Hecht and Dipl.-Ing. FH M. Neukamm for their help in physicochemical analyses. Ch.P. K. is grateful to the Alexander von Humboldt Foundation for a postdoctoral research fellowship. The project was partly supported by the “Verband der Chemischen Industrie”. Discussions within the NOE IDECAT are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes A. Lercher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, C.P., Gaab, S., Müller, T.E. et al. Oxidative Dehydrogenation of Light Alkanes on Supported Molten Alkali Metal Chloride Catalysts. Top Catal 50, 156–167 (2008). https://doi.org/10.1007/s11244-008-9102-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9102-3

Keywords

Navigation