Skip to main content
Log in

Highly Selective Supported Alkali Chloride Catalysts for the Oxidative Dehydrogenation of Ethane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Binary, ternary and quaternary molten eutectic alkali chloride catalysts, supported on mildly redox active oxides, were investigated for the oxidative dehydrogenation of ethane. The influence of different support oxides, on the catalytic performance, as well as that of different anions (bromide vs. chloride) and cations in a chloride eutectic system were studied. Metal oxides which react with chlorides are not suitable and lead to substantial deactivation. Especially supports forming volatile chlorides induce irreversible chloride depletion. Bromides catalyze oxidative dehydrogenation of ethane with higher rates, but lower olefin selectivities, highlighting the similarities and differences of Cl and Br in the redox cycle. Two catalysts were identified having olefin selectivities up to 98 % at 70 % ethane conversion, which ranges among the highest selectivities reported for ethane ODH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kung HH, Eley DD, Pines H, Haag WO (1994) Oxidative dehydrogenation of light (C2 to C4) alkanes. In: Advances in Catalysis, Academic Press,New York pp. 1–38

  2. Albonetti S, Cavani F, Trifiro F (1996) Key aspects of catalyst design for the selective oxidation of paraffins. Catal Rev 38:413–438

    Article  CAS  Google Scholar 

  3. Cavani F, Trifiro F (1995) The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins. Catal Today 24:307–313

    Article  CAS  Google Scholar 

  4. Zimmermann H, Walzl R, (2000) Ethylene. In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  5. Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catal Today 127:113–131

    Article  CAS  Google Scholar 

  6. Gärtner CA, van Veen AC, Lercher JA (2013) Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5:3196–3217

    Article  Google Scholar 

  7. Beretta A, Forzatti P, Ranzi E (1999) Production of olefins via oxidative dehydrogenation of propane in autothermal conditions. J Catal 184:469–478

    Article  CAS  Google Scholar 

  8. Blasco T, Nieto JM (1997) Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl Cat A-Gen 157:117–142

    Article  CAS  Google Scholar 

  9. Heracleous E, Machli M, Lemonidou AA, Vasalos IA (2005) Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts. J Mol Catal A: Chem 232:29–39

    Article  CAS  Google Scholar 

  10. Conway SJ, Wang DJ, Lunsford JH (1991) Selective oxidation of methane and ethane over lithium(1+)-magnesia-chloride catalysts promoted with metal oxides. Appl Cat A 79:L1–L5

    Article  CAS  Google Scholar 

  11. Conway SJ, Lunsford JH (1991) Oxidative dehydrogenation of ethane over chlorine-promoted lithium-magnesium oxide catalysts. J Catal 131:513–522

    Article  CAS  Google Scholar 

  12. Landau MV, Gutman A, Herskowitz M, Shuker R, Bitton Y, Mogilyansky D (2001) The role and stability of Li2O2 phase in supported LiCl catalyst in oxidative dehydrogenation of n-butane. J Mol Catal A: Chem 176:127–139

    Article  CAS  Google Scholar 

  13. Kumar C, Gaab S, Müller T, Lercher J (2008) Oxidative dehydrogenation of light alkanes on supported molten alkali metal chloride catalysts. Top Catal 50:156–167

    Article  CAS  Google Scholar 

  14. Tope B, Zhu Y, Lercher JA (2007) Oxidative dehydrogenation of ethane over Dy2O3/MgO supported LiCl containing eutectic chloride catalysts. Catal Today 123:113–121

    Article  CAS  Google Scholar 

  15. C.A. Gärtner, A.C. van Veen, J.A. Lercher, Mechanistic understanding of the highly selective oxidative dehydrogenation of ethane via supported chloride catalysts ready for submission, (2014)

  16. Gaab S, Machli M, Find J, Grasselli RK, Lercher JA (2003) Oxidative dehydrogenation of ethane over novel Li/Dy/Mg mixed oxides: structure-activity study. Top Catal 23:151–158

    Article  CAS  Google Scholar 

  17. Thomas DL, Cherng J-Y, Bennion DN (1988) Thermodynamic and transport properties of a four-component alkali-metal chloride electrolyte. J Electrochem Soc 135:2674–2678

    Article  CAS  Google Scholar 

  18. http://ras.material.tohoku.ac.jp/~olten/molten_eut_queryli-php, Accessed 15.10.2010

  19. G.J. Janz, Molten salts handbook, Academic Press, 1967

  20. Grosbois J, Dumousseau J.-Y (1983) Hydrogenation of chlorosilanes to silane, SiH4, in bath of molten salts, US Patent 4,405,591, in, US

  21. Ito H, Hasegawa Y, Ito Y (2001) Densities of eutectic mixtures of molten alkali chlorides below 673 K. J Chem Eng Data 46:1203–1205

    Article  CAS  Google Scholar 

  22. Sterrer M, Fischbach E, Risse T, Freund H-J (2005) Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy. Phys Rev Lett 94:186101–186105

    Article  Google Scholar 

  23. Gärtner CA, van Veen AC, Lercher JA (2013) New catalyst comprising mixture of at least three different chlorides which are selected from alkali chlorides/earth alkali chlorides on a support, useful for catalytic oxidative dehydrogenation of ethane to ethane. EP2606964 A1, WO2013092179-A1

  24. Gärtner CA, van Veen AC, Lercher JA (2013) Catalyst used in catalytic oxidative dehydrogenation of ethane to ethene, comprises lithium chloride (A) and one chloride that is different from lithium chloride (B) on support that comprises lanthanide oxide different from dysprosium oxide, EP2606965 A1, WO2013092180-A1

  25. Gärtner CA, van Veen AC, Lercher JA (2013) Catalyst used for catalytic oxidative dehydrogenation (ODH) of ethane to ethene, and for manufacturing 1,2-dichloroethane, comprises a mixture of lithium chloride and rubidium chloride or of lithium chloride and cesium chloride, EP2606963 A1

  26. Wiberg N, Wiberg E, Holleman AF (2007) Lehrbuch der Anorganischen Chemie de Gruyter

  27. Janiak C (2007) Nichtmetallchemie: Grundlagen und Anwendungen. Shaker, Aachen

    Google Scholar 

  28. Adams CT, Brandenberger SG, DuBois JB, Mill GS, Nager M, Richardson DB (1977) Dehydrogenation and coupling reactions in the presence of iodine and molten salt hydrogen iodide acceptors. J Org Chem 42:1–6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge SOLVAY for financial support to conduct this work. We especially thank Dr. Armin Liebens, Dr. Marco Piccinini and Dr. Paul Degraeve, SOLVAY, as well as Prof. Andreas Jentys, TUM and Prof. Angeliki Lemonidou, Aristotle University Thessaloniki for fruitful discussions. We further thank Johannes Simböck, Sabine Frischhut, Katharina Freitag, Michael Eckbauer and Thomas Bartesch for assistance with experiments. We are also grateful to Xaver Hecht for BET and Martin Neukamm for AAS measurements. C. G. thanks the TUM Graduate School and the Graduate Center Chemistry for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes A. Lercher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gärtner, C.A., van Veen, A.C. & Lercher, J.A. Highly Selective Supported Alkali Chloride Catalysts for the Oxidative Dehydrogenation of Ethane. Top Catal 57, 1236–1247 (2014). https://doi.org/10.1007/s11244-014-0277-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0277-5

Keywords

Navigation