Skip to main content
Log in

Metal supported oxide nanostructures: model systems for advanced catalysis

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Metal supported oxide nanostructures are discussed within the framework of the “inverse model catalyst” concept. We show that oxide nanostructures on metal surfaces may be regarded as artificial oxide materials, which display novel properties as compared to bulk oxide compounds and are stabilised by interfacial interactions and two-dimensional confinement effects. This is illustrated for prototypical examples of vanadium oxide overlayers on Rh(111) and Pd(111) surfaces. Structure and morphological changes of the oxide phase on V-oxide/Rh and V-oxide/Pd inverse catalyst surfaces are discussed, and the mass transport problem in catalyst systems during oxidation-reduction cycles is addressed. We demonstrate that the diffusion of oxide cluster over the metal surface provides a effective means of mass transport. The role of metal-oxide interface in determining the oxide nanolayer structure on particular substrate surfaces is investigated, and interfacial chemistry and interfacial strain effects are identified as important parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Somorjai (1994) Introduction to Surface Chemistry and Catalysis John Wiley & Sons, Inc New York

    Google Scholar 

  2. S.J. Tauster S.C. Fung R.T.K. Baker J.A. Horsley (1981) Science 211 1121 Occurrence Handle10.1126/science.211.4487.1121 Occurrence Handle1:CAS:528:DyaL3MXhvVWgt7o%3D

    Article  CAS  Google Scholar 

  3. S.J. Tauster (1987) Acc. Chem. Res. 20 389 Occurrence Handle10.1021/ar00143a001 Occurrence Handle1:CAS:528:DyaL2sXmt1ertb0%3D

    Article  CAS  Google Scholar 

  4. G.L. Haller D.E. Resasco (1989) Adv. Catal. 36 173 Occurrence Handle1:CAS:528:DyaL1MXlsVWnsbo%3D Occurrence Handle10.1016/S0360-0564(08)60018-8

    Article  CAS  Google Scholar 

  5. O. Dolub W. Hebenstreit U. Diebold (2000) Phys. Rev. Lett. 84 3646 Occurrence Handle10.1103/PhysRevLett.84.3646

    Article  Google Scholar 

  6. S. Surnev J. Schoiswohl G. Kresse M.G. Ramsey F.P. Netzer (2002) Phys. Rev. Lett. 89 246101 Occurrence Handle10.1103/PhysRevLett.89.246101 Occurrence Handle1:CAS:528:DC%2BD38XptFGnsbo%3D

    Article  CAS  Google Scholar 

  7. A. Boffa C. Lin A.T. Bell G.A. Somorjai (1994) J. Catal. 149 149 Occurrence Handle10.1006/jcat.1994.1280 Occurrence Handle1:CAS:528:DyaK2cXmtVyjsr8%3D

    Article  CAS  Google Scholar 

  8. A.B. Boffa C. Lin A.T. Bell G.A. Somorjai (1994) Catal. Lett. 27 243 Occurrence Handle10.1007/BF00813909 Occurrence Handle1:CAS:528:DyaK2cXls1Cktbs%3D

    Article  CAS  Google Scholar 

  9. K. Hayek B. Jenewein B. Klötzer W. Reichl (2001) Topics in Catal. 14 25 Occurrence Handle10.1023/A:1009098714759

    Article  Google Scholar 

  10. M. Sock S. Surnev M.G. Ramsey F.P. Netzer (2001) Topics in Catal. 14 15 Occurrence Handle10.1023/A:1009046730688

    Article  Google Scholar 

  11. F.P. Leisenberger S. Surnev G. Koller M.G. Ramsey F.P. Netzer (2000) Surface Sci. 444 211 Occurrence Handle10.1016/S0039-6028(99)01042-0 Occurrence Handle1:CAS:528:DyaK1MXnvFaktrc%3D

    Article  CAS  Google Scholar 

  12. S. Surnev L. Vitali M.G. Ramsey F.P. Netzer G. Kresse J. Hafner (2000) Phys. Rev. B61 13945

    Google Scholar 

  13. I. Kardinal F.P. Netzer M.G. Ramsey (1997) Surf. Sci. 376 229 Occurrence Handle10.1016/S0039-6028(96)01396-9 Occurrence Handle1:CAS:528:DyaK2sXivFSqt74%3D

    Article  CAS  Google Scholar 

  14. S. Surnev M. Sock G. Kresse J.N. Andersen M.G. Ramsey F.P. Netzer (2003) J. Phys. Chem. B107 4777

    Google Scholar 

  15. R. Nyholm J.N. Andersen U. Johansson B.N. Jensen I. Lindau (2001) Nucl. Instr. Meth. Phys. Res. A467–468 320

    Google Scholar 

  16. G. Kresse J. Furthmüller (1996) Comput. Mater. Sci. 6 15 Occurrence Handle10.1016/0927-0256(96)00008-0 Occurrence Handle1:CAS:528:DyaK28XmtFWgsrk%3D

    Article  CAS  Google Scholar 

  17. J. Schoiswohl S. Surnev M. Sock S. Eck M.G. Ramsey F.P. Netzer G. Kresse (2005) Phys. Rev. B71 165437

    Google Scholar 

  18. J. Schoiswohl M. Sock S. Eck S. Surnev M.G. Ramsey F.P. Netzer G. Kresse (2004) Phys. Rev. B69 155403

    Google Scholar 

  19. S. Schintke W.D. Schneider (2004) J. Phys.: Condens. Matter 16 R49 Occurrence Handle10.1088/0953-8984/16/4/R02 Occurrence Handle1:CAS:528:DC%2BD2cXitVWrsb0%3D

    Article  CAS  Google Scholar 

  20. J. Schoiswohl G. Kresse S. Surnev M. Sock M.G. Ramsey F.P. Netzer (2004) Phys. Rev. Lett. 92 206103 Occurrence Handle10.1103/PhysRevLett.92.206103 Occurrence Handle1:CAS:528:DC%2BD2cXkt1Ojs7k%3D

    Article  CAS  Google Scholar 

  21. S.F. Vyboishchikov J. Sauer (2001) J. Phys. Chem. A105 8588

    Google Scholar 

  22. S. Surnev J. Schoiswohl G. Kresse M.G. Ramsey F.P. Netzer (2002) Phys. Rev. Lett. 89 246101 Occurrence Handle10.1103/PhysRevLett.89.246101 Occurrence Handle1:CAS:528:DC%2BD38XptFGnsbo%3D

    Article  CAS  Google Scholar 

  23. M. Sambi M. Petukhov B. Domenichini G.A. Rizzi S. Surnev G. Kresse F.P. Netzer G. Granozzi (2003) Surf. Sci. 529 L234 Occurrence Handle10.1016/S0039-6028(03)00070-0 Occurrence Handle1:CAS:528:DC%2BD3sXitVKltbw%3D

    Article  CAS  Google Scholar 

  24. C. Klein G. Kresse S. Surnev F.P. Netzer M. Schmid P. Varga (2003) Phys. Rev. B68 235416

    Google Scholar 

  25. S. Surnev G. Kresse M.G. Ramsey F.P. Netzer (2001) Phys. Rev. Lett. 87 086102 Occurrence Handle10.1103/PhysRevLett.87.086102 Occurrence Handle1:CAS:528:DC%2BD3MXlvVemsL8%3D

    Article  CAS  Google Scholar 

  26. J. Schoiswohl S. Surnev M. Sock G. Kresse M.G. Ramsey F.P. Netzer (2004) Angew. Chem. Intern. Ed. 43 5417 Occurrence Handle10.1002/anie.200490142

    Article  Google Scholar 

  27. J. Schoiswohl S. Eck M.G. Ramsey J.N. Andersen S. Surnev F.P. Netzer (2005) Surf. Sci. 580 4035 Occurrence Handle10.1016/j.susc.2005.02.023 Occurrence Handle1:CAS:528:DC%2BD2MXjtlSktLc%3D

    Article  CAS  Google Scholar 

  28. M. Todorova W.X. Li M.V. Ganduglia-Piravano C. Stampfl K. Reuter M. Schäfer (2002) Phys. Rev. Lett. 89 096103 Occurrence Handle10.1103/PhysRevLett.89.096103 Occurrence Handle1:CAS:528:DC%2BD38Xmt1Gnsro%3D

    Article  CAS  Google Scholar 

  29. J. Schoiswohl, PhD thesis, Karl-Franzens University Graz, May 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Netzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoiswohl, J., Sock, M., Chen, Q. et al. Metal supported oxide nanostructures: model systems for advanced catalysis. Top Catal 46, 137–149 (2007). https://doi.org/10.1007/s11244-007-0324-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-0324-6

Keywords

Navigation