Skip to main content
Log in

Role of Metal/Oxide Interfaces in Enhancing the Local Oxide Reducibility

  • Review Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Oxide reducibility is an important property in catalysis by metal-oxides. The reducibility of an oxide can be substantially modified when an interface is created between the oxide and a metal. Here we discuss two types of interfaces. One consists of gold nanoparticles deposited on anatase TiO2 or tetragonal ZrO2 (101) surfaces; these are traditional direct catalysts (metal deposited on an oxide). The second example consists of a metal support, Pt or a Pt3Zr alloy, where a ZrO2 nanofilm is deposited; this is representative of an inverse catalyst (oxide on metal). We designed models of these systems and analyzed by means of first principle calculations a key descriptor of the oxide reducibility, the cost of formation of an oxygen vacancy. We show that this cost is dramatically reduced when the oxide is interfaced with the metal. The effect on catalytic reactions is analyzed by computing the energy profiles for the CO oxidation reaction on Au/TiO2 and Au/ZrO2 model catalysts. Despite the very different nature of the two oxide supports, reducible for TiO2 and non-reducible for ZrO2, the same Au-assisted Mars–van Krevelen mechanism is found, with similar barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(adapted from ref. [35])

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wachs IE (2005) Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today 100:79–94

    CAS  Google Scholar 

  2. Grasselli RK (2002) Fundamental principles of selective heterogeneous oxidation catalysis. Topics Catal 21:79–88

    CAS  Google Scholar 

  3. Mars P, Van Krevelen DW (1954) Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci 3:41–59

    CAS  Google Scholar 

  4. Helali Z, Jedidi A, Syzgantseva OA, Calatayud M, Minot C (2017) Scaling reducibility of metal oxides. Theor Chem Acc 136:100

    Google Scholar 

  5. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473

    CAS  Google Scholar 

  6. Tosoni S, Chen HYT, Puigdollers AR, Pacchioni G (2018) TiO2 and ZrO2 in biomass conversion: why catalyst reduction helps. Philos Trans R Soc A 376:20170056

    Google Scholar 

  7. Tosoni S, Pacchioni G (2016) Acetic acid ketonization on tetragonal zirconia: role of surface reduction. J Catal 344:465–473

    CAS  Google Scholar 

  8. Chen HJ, Pacchioni G (2016) Role of oxide reducibility in the deoxygenation of phenol on rutheniun clusters supported on the anatase TiO2 (101) surface. ChemCatChem 8:2492–2499

    CAS  Google Scholar 

  9. Puigdollers AR, Illas F, Pacchioni G (2016) Structure and properties of zirconia nanoparticles from density functional theory calculations. J Phys Chem C 120:4392–4402

    CAS  Google Scholar 

  10. Ruiz Puigdollers A, Tosoni S, Pacchioni G (2016) Turning a nonreducible into a reducible oxide via nanostructuring: opposite behavior of bulk ZrO2 and ZrO2 nanoparticles toward H2 adsorption. J Phys Chem C 120:15329–15337

    CAS  Google Scholar 

  11. Albanese E, Ruiz Puigdollers A, Pacchioni G (2018) Theory of ferromagnetism in reduced ZrO2–x nanoparticles. ACS Omega 3:5301–5307

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rahman MA, Rout S, Thomas JP, McGillivray D, Leung KT (2016) Defect-rich dopant-free ZrO2 nanostructures with superior dilute ferromagnetic semiconductor properties. J Am Chem Soc 138:11896–11906

    CAS  PubMed  Google Scholar 

  13. Ruiz Puigdollers A, Schlexer P, Tosoni S, Pacchioni G (2017) Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal 7:6493–6513

    CAS  Google Scholar 

  14. Widmann D, Behm RJ (2011) Active oxygen on a Au/TiO2 catalyst—formation, stability and CO oxidation activity. Angew Chem Int Ed 50:10241–10245

    CAS  Google Scholar 

  15. Schlexer P, Widmann D, Behm RJ, Pacchioni G (2018) CO oxidation on a Au/TiO2 nanoparticle catalyst via the Au-assisted Mars-van-Krevelen mechanism. ACS Catal 8:6513–6525

    CAS  Google Scholar 

  16. Puigdollers AR, Pacchioni G (2017) CO oxidation on Au nanoparticles supported on ZrO2: role of metal/oxide interface and oxide reducibility. ChemCatChem 9:1119–1127

    CAS  Google Scholar 

  17. Puigdollers AR, Pacchioni G (2017) Reducibility of ZrO2/Pt3Zr and ZrO2/Pt 2D films compared to bulk zirconia: a DFT + U study of oxygen removal and H2 adsorption. Nanoscale 9:6866–6876

    Google Scholar 

  18. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    CAS  Google Scholar 

  19. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  21. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron energy loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509

    CAS  Google Scholar 

  22. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Google Scholar 

  23. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  PubMed  Google Scholar 

  24. Tosoni S, Sauer J (2010) Accurate quantum chemical energies for the interaction of hydrocarbons with oxide surfaces: CH4/MgO (001). Phys Chem Chem Phys 12:14330–14340

    CAS  PubMed  Google Scholar 

  25. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for bader charge allocation. J Comput Chem 28:899–908

    CAS  PubMed  Google Scholar 

  26. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9986

    CAS  Google Scholar 

  27. Predel B (1998) Pt-Zr (platinum-zirconium). Springer materials—the Landbolt–Börnstein database. Springer, Berlin. https://doi.org/10.1007/10542753_2542

    Book  Google Scholar 

  28. Haynes MM (2015), CRC handbook of chemistry and physics, 96th edn. CRC Press, Boca Raton

    Google Scholar 

  29. Haruta M, Daté M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A 222:427–437

    CAS  Google Scholar 

  30. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Google Scholar 

  31. Remediakis IN, Lopez N, Nørskov JK (2005) CO oxidation on rutile-supported Au nanoparticles. Angew Chem 117:1858–1860

    Google Scholar 

  32. Widmann D, Behm RJ (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47:740–749

    CAS  PubMed  Google Scholar 

  33. Kotobuki M, Leppelt R, Hansgen D, Widmann D, Behm RJ (2009) Reactive oxygen on a Au/TiO2 supported catalyst. J Catal 264:67–76

    CAS  Google Scholar 

  34. Widmann D, Liu Y, Schüth F, Behm RJ (2010) Support cffects in the au catalyzed CO oxidation—correlation between activity, oxygen storage capacity and support reducibility. J Catal 276:292–305

    CAS  Google Scholar 

  35. Widmann D, Krautsieder A, Walther P, Brückner A, Behm RJ (2016) How temperature affects the mechanism of CO oxidation on Au/TiO2: a combined EPR and TAP reactor study of the reactive removal of TiO2 surface lattice oxygen in Au/TiO2 by CO. ACS Catal 6:5005–5011

    CAS  Google Scholar 

  36. Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD (2014) The Critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345:1599–1602

    CAS  PubMed  Google Scholar 

  37. Daté M, Haruta M (2001) Moisture effect on CO oxidation over Au/TiO2 catalyst. J Catal 201:221–224

    Google Scholar 

  38. Gionco C, Paganini MC, Giamello E, Burgess R, Di Valentin C, Pacchioni G (2013) Paramagnetic defects in polycrystalline zirconia: an EPR and DFT study. Chem Mater 25:2243–2253

    CAS  Google Scholar 

  39. Gerosa M, Bottani CE, Caramella L, Onida G, Di Valentin C, Pacchioni G (2015) Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: the case of oxygen vacancies in metal oxides. J Chem Phys 143:134702–134713

    PubMed  Google Scholar 

  40. Giordano L, Pacchioni G (2011) Oxide films at the nanoscale: new structures, new functions, and new materials. Acc Chem Res 44:1244–1252

    CAS  PubMed  Google Scholar 

  41. Kozlov SM, Demiroglu I, Neyman KM, Bromley ST (2015) Reduced ceria nanofilms from structure prediction. Nanoscale 7:4361–4366

    CAS  PubMed  Google Scholar 

  42. Zhang Y, Giordano L, Pacchioni G, Vittadini A, Sedona F, Finetti P, Granozzi G (2007) The structure of a stoichiometric TiO2 nanophase on Pt (111). Surf Sci 601:3488–3496

    CAS  Google Scholar 

  43. Pacchioni G (2012) Two-dimensional oxides: multifunctional materials for advanced technologies. Chem Eur J 18:10144–10158

    CAS  PubMed  Google Scholar 

  44. Antlanger M, Mayr-Schmölzer W, Pavelec J, Mittendorfer F, Redinger J, Varga P, Diebold U, Schmid M (2012) Pt3Zr (0001): a substrate for growing well-ordered ultrathin zirconia films by oxidation. Phys Rev B 86:035451

    Google Scholar 

  45. Li H, Choi JIJ, Mayr-Schmölzer W, Weilach C, Rameshan C, Mittendorfer, Redinger J, Schmidt M, Rupprechter G (2015) Growth of an ultrathin zirconia film on Pt3Zr examined by high-resolution X-ray photoelectron spectroscopy, temperature-programmed desorption, scanning tunneling microscopy, and density functional theory. J Phys Chem C 119:2462–2470

    CAS  Google Scholar 

  46. Napetschnig E, Schmid M, Varga P (2008) Ultrathin alumina film on Cu-9 at% Al (111). Surf Sci 602:1750–1756

    CAS  Google Scholar 

  47. Maurice V, Salmeron M, Somorjai GA (1990) The epitaxial growth of zirconium oxide thin films on Pt (111) single crystal surfaces. Surf Sci 237:116–126

    CAS  Google Scholar 

  48. Meinel K, Eichler A, Förster S, Schindler KM, Neddermeyer H, Widdra W (2006) Surface and interface structures of epitaxial ZrO2 films on Pt (111): experiment and density-functional theory calculations. Phys Rev B 74:235444

    Google Scholar 

  49. Hume-Rothery W (1968) The Engel–Brewer theories of metals and alloys. Prog Mat Sci 13:229–265

    Google Scholar 

  50. Pacchioni G (2000) Quantum chemistry of oxide surfaces: from CO chemisorption to the identification of the structure and nature of point defects on MgO. Surf Rev Lett 7:277–306

    CAS  Google Scholar 

Download references

Acknowledgements

The work has been supported by the European Community’s Seventh Program (FP7 Nanosciences, Nanotechnologies, Materials and new Production Technologies) FP7/2007–2013 under Grant Agreement No. 607417—European Marie Curie Network CATSENSE, and by the Italian MIUR through the PRIN Project (Ministero dell’Istruzione, dell’Università e della Ricerca) 2015K7FZLH SMARTNESS “Solar driven chemistry: new materials for photo- and electro-catalysis”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Pacchioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlexer, P., Ruiz Puigdollers, A. & Pacchioni, G. Role of Metal/Oxide Interfaces in Enhancing the Local Oxide Reducibility. Top Catal 62, 1192–1201 (2019). https://doi.org/10.1007/s11244-018-1056-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1056-5

Keywords

Navigation