Skip to main content
Log in

Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

We compare the activity and relevant gold species of nanostructured gold–cerium oxide and gold–iron oxide catalysts for the CO oxidation by dioxygen and water. Well dispersed gold nanoparticles in reduced form provide the active sites for the CO oxidation reaction on both oxide supports. On the other hand, oxidized gold species, strongly bound on the support catalyze the water-gas shift reaction. Gold species weakly bound to ceria (doped with lanthana) or iron oxide can be removed by sodium cyanide at pH ≥12. Both parent and leached catalysts were investigated. The activity of the leached gold–iron oxide catalyst in CO oxidation is approximately two orders of magnitude lower than that of the parent material. However, after exposure to H2 up to 400 °C gold diffuses out and is in reduced form on the surface, a process accompanied by a dramatic enhancement of the CO oxidation activity. Similar results were found with the gold–ceria catalysts. On the other hand, pre-reduction of the calcined leached catalyst samples did not promote their water-gas shift activity. UV–Vis, XANES and XPS were used to probe the oxidation state of the catalysts after various treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haruta N. Yamada T. Kobayashi S. Iijima (1989) J. Catal. 115 301 Occurrence Handle10.1016/0021-9517(89)90034-1 Occurrence Handle1:CAS:528:DyaL1MXhtVamsbY%3D

    Article  CAS  Google Scholar 

  2. A.K. Sinha S. Seelan M. Okumura T. Akita S. Tsubota M. Haruta (2005) J. Phys. Chem. B 109 3956 Occurrence Handle16851450 Occurrence Handle10.1021/jp0465229 Occurrence Handle1:CAS:528:DC%2BD2MXhtFegtb8%3D

    Article  PubMed  CAS  Google Scholar 

  3. G.C. Bond D.T. Thompson (2006) Appl. Catal. A 302 1 Occurrence Handle10.1016/j.apcata.2006.01.001 Occurrence Handle1:CAS:528:DC%2BD28XitVaktLo%3D

    Article  CAS  Google Scholar 

  4. G.R. Bamwenda S. Tsubota T. Nakamura M. Haruta (1997) Catal. Lett. 44 83 Occurrence Handle10.1023/A:1018925008633 Occurrence Handle1:CAS:528:DyaK2sXis12isr8%3D

    Article  CAS  Google Scholar 

  5. M. Valden X. Lai D.W. Goodman (1998) Science 281 1647 Occurrence Handle9733505 Occurrence Handle10.1126/science.281.5383.1647 Occurrence Handle1:CAS:528:DyaK1cXmtVSqu7w%3D Occurrence Handle1998Sci...281.1647V

    Article  PubMed  CAS  ADS  Google Scholar 

  6. V. Schwartz D.R. Mullins W. Yan B. Chen S. Dai S.H. Overbury (2004) J. Phys. Chem. B 108 15782 Occurrence Handle10.1021/jp048076v Occurrence Handle1:CAS:528:DC%2BD2cXnt1egsbo%3D

    Article  CAS  Google Scholar 

  7. S.H. Overbury V. Schwartz D.R. Mullins W. Yan S. Dai (2006) J. Catal 241 56 Occurrence Handle10.1016/j.jcat.2006.04.018 Occurrence Handle1:CAS:528:DC%2BD28XlvFyltLg%3D

    Article  CAS  Google Scholar 

  8. S.D. Gardner G.B. Hoflund D.R. Schryer J. Schryer B.T. Upchurch E.J. Kielin (1991) Langmuir 7 2135 Occurrence Handle10.1021/la00058a027 Occurrence Handle1:CAS:528:DyaK3MXlvFSktLk%3D

    Article  CAS  Google Scholar 

  9. W. Liu M. Flytzani-Stephanopoulos (1995) J. Catal. 153 304 Occurrence Handle10.1006/jcat.1995.1132 Occurrence Handle1:CAS:528:DyaK2MXltlOqtb4%3D

    Article  CAS  Google Scholar 

  10. W. Liu M. Flytzani-Stephanopoulos (1995) J. Catal. 153 317 Occurrence Handle10.1006/jcat.1995.1133 Occurrence Handle1:CAS:528:DyaK2MXltlOqtb8%3D

    Article  CAS  Google Scholar 

  11. S. Carrettin P. Concepción A. Corma J.M.L. Nieto V.F. Puntes (2004) Angew. Chem. Int. Ed. 43 2538 Occurrence Handle10.1002/anie.200353570 Occurrence Handle1:CAS:528:DC%2BD2cXkt1ejtrs%3D

    Article  CAS  Google Scholar 

  12. M. Okumura S. Nakamura S. Tsubota T. Nakamura M. Azuma M. Haruta (1998) Catal. Lett. 51 53 Occurrence Handle10.1023/A:1019020614336 Occurrence Handle1:CAS:528:DyaK1cXjtlSht70%3D

    Article  CAS  Google Scholar 

  13. C.K. Costello J.H. Yang H.Y. Law Y. Wang J.-N. Lin L.D. Marks M.C. Kung H.H. Kung (2003) Appl. Catal. A 243 15 Occurrence Handle10.1016/S0926-860X(02)00533-1 Occurrence Handle1:CAS:528:DC%2BD3sXitVyrs7k%3D

    Article  CAS  Google Scholar 

  14. J.T. Calla R.J. Davis (2005) Catal. Lett. 99 IssueID1–2 21 Occurrence Handle10.1007/s10562-004-0771-7 Occurrence Handle1:CAS:528:DC%2BD2MXotFKj

    Article  CAS  Google Scholar 

  15. N. Weiher E. Bus L. Delannoy C. Louis D.E. Ramaker J.T. Miller J.A. Bokhoven Particlevan (2006) J. Catal. 240 100 Occurrence Handle10.1016/j.jcat.2006.03.010 Occurrence Handle1:CAS:528:DC%2BD28XksFaqtr0%3D

    Article  CAS  Google Scholar 

  16. W. Yan S. Brown Z. Pan S.M. Mahurin S.H. Overbury S. Dai (2006) Angew. Chem. Int. Ed. 45 3614 Occurrence Handle10.1002/anie.200503808 Occurrence Handle1:CAS:528:DC%2BD28Xls1GitLw%3D

    Article  CAS  Google Scholar 

  17. a: M.M. Schubert, A. Venugopal, M.J. Kahich, V. Plzak, R.J. Behm, J. Catal. 222 (2004) 32; b: M.M. Schubert, V. Plzak, J.␣Garche, R.J. Behm, Catal. Lett. 76 (2001) 143

  18. M. Haruta S. Tsubota T. Kobayashi H. Kageyama M.J. Genet B. Delmon (1993) J. Catal. 144 175 Occurrence Handle10.1006/jcat.1993.1322 Occurrence Handle1:CAS:528:DyaK2cXhs1GitQ%3D%3D

    Article  CAS  Google Scholar 

  19. W. Deng J. Jesus ParticleDe H. Saltsburg M. Flytzani-Stephanopoulos (2005) Appl. Catal. A 291 126 Occurrence Handle10.1016/j.apcata.2005.02.048 Occurrence Handle1:CAS:528:DC%2BD2MXosVWqurY%3D

    Article  CAS  Google Scholar 

  20. Q. Fu A. Weber M. Flytzani-Stephanopoulos (2001) Catal. Lett. 77 IssueID1–3 87 Occurrence Handle10.1023/A:1012666128812 Occurrence Handle1:CAS:528:DC%2BD3MXptlKqtLo%3D

    Article  CAS  Google Scholar 

  21. H.C. Yao Y.F.Y. Yao (1984) J. Catal. 86 254 Occurrence Handle10.1016/0021-9517(84)90371-3 Occurrence Handle1:CAS:528:DyaL2cXht1Kiu7s%3D

    Article  CAS  Google Scholar 

  22. Q. Fu H. Saltsburg M. Flytzani-Stephanopoulos (2003) Science 301 935 Occurrence Handle12843399 Occurrence Handle10.1126/science.1085721 Occurrence Handle1:CAS:528:DC%2BD3sXmt1els7s%3D Occurrence Handle2003Sci...301..935F

    Article  PubMed  CAS  ADS  Google Scholar 

  23. Q. Fu W. Deng H. Saltsburg M. Flytzani-Stephanopoulos (2005) Appl. Catal. B 56 57 Occurrence Handle10.1016/j.apcatb.2004.07.015 Occurrence Handle1:CAS:528:DC%2BD2MXhtVKnsLg%3D

    Article  CAS  Google Scholar 

  24. E.S. Putna R.J. Gorte J.M. Vohs G.W. Graham (1998) J. Catal. 178 598 Occurrence Handle10.1006/jcat.1998.2206 Occurrence Handle1:CAS:528:DyaK1cXmtlChsb4%3D

    Article  CAS  Google Scholar 

  25. S. Carrettin A. Corma M. Iglesias F. Sánchez (2005) Appl. Catal. A. 291 IssueID1–2 247 Occurrence Handle1:CAS:528:DC%2BD2MXosVajsrg%3D

    CAS  Google Scholar 

  26. P. Concepción S. Carrettin A. Corma (2006) Appl. Catal. A 307 42 Occurrence Handle10.1016/j.apcata.2006.03.004 Occurrence Handle1:CAS:528:DC%2BD28XkvFCku7k%3D

    Article  CAS  Google Scholar 

  27. J. Guzman S. Carrettin J.C. Fierro-Gonzalez Y. Hao B.C. Gates A. Corma (2005) Angew. Chem. Int. Ed. 44 4778 Occurrence Handle10.1002/anie.200500659 Occurrence Handle1:CAS:528:DC%2BD2MXnvVSqtrs%3D

    Article  CAS  Google Scholar 

  28. Guzman J., Corma A. (2005) Chem Comm. 743

  29. G.J. Hutchings M.S. Hall A.F. Carley P. Landon B.E. Solsona C.J. Kiely A. Herzing M. Makkee J.A. Moulijn A. Overweg J.C. Fierro-Gonzalez J. Guzman B.C. Gates (2006) J.Catal. 242 71 Occurrence Handle10.1016/j.jcat.2006.06.001 Occurrence Handle1:CAS:528:DC%2BD28XnsFOqsL8%3D

    Article  CAS  Google Scholar 

  30. J. Guzman B.C. Gates (2002) J. Phys. Chem. B 106 7659 Occurrence Handle10.1021/jp020584m Occurrence Handle1:CAS:528:DC%2BD38XltlWksbc%3D

    Article  CAS  Google Scholar 

  31. J.C. Fierro-Gonzalez B.C. Gates (2005) Langmuir 21 5693 Occurrence Handle15952811 Occurrence Handle10.1021/la0506574 Occurrence Handle1:CAS:528:DC%2BD2MXksVWjs7g%3D

    Article  PubMed  CAS  Google Scholar 

  32. M.S. Chen D.W. Goodman (2004) Science 306 252 Occurrence Handle15331772 Occurrence Handle10.1126/science.1102420 Occurrence Handle1:CAS:528:DC%2BD2cXotFWnsLw%3D Occurrence Handle2004Sci...306..252C

    Article  PubMed  CAS  ADS  Google Scholar 

  33. M.S. Chen D.W. Goodman (2006) Catal. Today 111 22 Occurrence Handle10.1016/j.cattod.2005.10.007 Occurrence Handle1:CAS:528:DC%2BD2MXhtlCnsb3P

    Article  CAS  Google Scholar 

  34. C.T. Campbell (2004) Science 306 234 Occurrence Handle15472065 Occurrence Handle10.1126/science.1104246 Occurrence Handle1:CAS:528:DC%2BD2cXosVSntbo%3D

    Article  PubMed  CAS  Google Scholar 

  35. S. Lai Y. Qiu S. Wang (2006) J. Catal. 237 303 Occurrence Handle10.1016/j.jcat.2005.11.020 Occurrence Handle1:CAS:528:DC%2BD28XhslSltQ%3D%3D

    Article  CAS  Google Scholar 

  36. I.N. Remediakis N. Lopez J.K. Nørskov (2005) Appl. Catal. A 291 IssueID1–2 13 Occurrence Handle1:CAS:528:DC%2BD2MXosVWqurc%3D

    CAS  Google Scholar 

  37. X. Wang J.A. Rodriguez J.C. Hanson M. Pérez J. Evans (2005) J. Chem. Phys. 123 221101 Occurrence Handle16375458 Occurrence Handle10.1063/1.2136876 Occurrence Handle1:CAS:528:DC%2BD2MXhtlGiu7jI

    Article  PubMed  CAS  Google Scholar 

  38. D. Tibiletti A. Amieiro-Fonseca R. Burch Y. Chen J.M. Fisher A. Goguet C. Hardacre P. Hu D. Thompsett (2005) J. Phys. Chem. B 109 IssueID47 22553 Occurrence Handle16853937 Occurrence Handle10.1021/jp054576s Occurrence Handle1:CAS:528:DC%2BD2MXhtFyrur%2FJ

    Article  PubMed  CAS  Google Scholar 

  39. Z.-P. Liu S.J. Jenkins D.A. King (2005) Phys. Rev. Lett 94 196102 Occurrence Handle16090190 Occurrence Handle10.1103/PhysRevLett.94.196102 Occurrence Handle2005PhRvL..94s6102L Occurrence Handle1:CAS:528:DC%2BD2MXksVCku7k%3D

    Article  PubMed  ADS  CAS  Google Scholar 

  40. M.A. Bollinger M.A. Vannice (1996) Appl. Catal. B 8 417 Occurrence Handle10.1016/0926-3373(95)00077-1 Occurrence Handle1:CAS:528:DyaK28XjsVOhsbY%3D

    Article  CAS  Google Scholar 

  41. J.D. Grunwaldt A. Baiker (1999) J. Phys. Chem. B 1073 1002 Occurrence Handle10.1021/jp983206j

    Article  Google Scholar 

  42. J.H. Yang J.D. Henao M.C. Raphulu Y. Wang T. Caputo A.J. Groszek M.C. Kung M.S. Scurrell J.T. Miller H.H. Kung (2005) J. Phys. Chem. B 109 IssueID20 10319 Occurrence Handle16852250 Occurrence Handle10.1021/jp050818c Occurrence Handle1:CAS:528:DC%2BD2MXjsFahtbw%3D

    Article  PubMed  CAS  Google Scholar 

  43. D. Wang Z. Hao D. Cheng X. Shi C. Hu (2003) J. Mol. Catal. A 200 229 Occurrence Handle10.1016/S1381-1169(03)00007-4 Occurrence Handle1:CAS:528:DC%2BD3sXjs1Chtbs%3D

    Article  CAS  Google Scholar 

  44. U.R. Pillai S. Deevi (2006) Appl. Catal. A 299 266 Occurrence Handle10.1016/j.apcata.2005.10.040 Occurrence Handle1:CAS:528:DC%2BD2MXhtlCnsL%2FF

    Article  CAS  Google Scholar 

  45. Tz. Venkov Hr. Klimev M.A. Centeno J.A. Odriozola K. Hadjiivanov (2006) Catal. Comm. 7 IssueID5 308 Occurrence Handle1:CAS:528:DC%2BD28XjtFGms7s%3D Occurrence Handle10.1016/j.catcom.2005.11.018

    Article  CAS  Google Scholar 

  46. Y. Li Q. Fu M. Flytzani-Stephanopoulos (2000) Appl. Catal. B 27 179 Occurrence Handle10.1016/S0926-3373(00)00147-8

    Article  Google Scholar 

  47. Y. Yuan P. Kozlova K. Asakura H. Wan K. Tsai Y. Iwasawa (1997) J. Catal. 170 191 Occurrence Handle10.1006/jcat.1997.1752 Occurrence Handle1:CAS:528:DyaK2sXlsF2qtr4%3D

    Article  CAS  Google Scholar 

  48. A.M. Venezia G. Pantaleo A. Longo G.D. Carlo M.P. Casaletto F.L. Liotta G. Deganello (2005) J. Phys. Chem. B 109 2821 Occurrence Handle16851293 Occurrence Handle10.1021/jp045928i Occurrence Handle1:CAS:528:DC%2BD2MXmslKktA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  49. J. De Jesus, M.S thesis, Chemical & Biological Engineering, Tufts University, 2004

  50. Q. Fu S. Kudriavtseva H. Saltsburg M. Flytzani-Stephanopoulos (2003) Chem. Eng. J. 93 41 Occurrence Handle10.1016/S1385-8947(02)00107-9 Occurrence Handle1:CAS:528:DC%2BD3sXitleqs7o%3D

    Article  CAS  Google Scholar 

  51. M. Manzoli F. Boccuzzi A. Chiorino F. Vindigni W. Deng M. Flytzani-Stephanopoulos (2007) J. Catal. 245 306 Occurrence Handle10.1016/j.jcat.2006.10.021 Occurrence Handle1:CAS:528:DC%2BD2sXlsFGktQ%3D%3D

    Article  CAS  Google Scholar 

  52. Y. Wu E. Garfunkel T.E. Madey (1996) J. Vac. Sci. Technol. A 14 1662 Occurrence Handle10.1116/1.580315 Occurrence Handle1:CAS:528:DyaK28XjslSlsLs%3D Occurrence Handle1996JVST...14.1662W

    Article  CAS  ADS  Google Scholar 

  53. M.M. Abou-Sekkina M.M. El-Kersh O.A. Shalma (1999) J. Radioanal. Nucl. Chem. 241 15 Occurrence Handle10.1007/BF02347284 Occurrence Handle1:CAS:528:DyaK1MXmtVerurw%3D

    Article  CAS  Google Scholar 

  54. P. Marturano L. Drozdovâ G.D. Pirngruber A. Kogelberger R. Prins (2001) Phys. Chem. Chem. Phys. 2 5585 Occurrence Handle10.1039/b107266h Occurrence Handle1:CAS:528:DC%2BD3MXpt12rs7Y%3D

    Article  CAS  Google Scholar 

  55. A.N. Pestryakov V.V. Lunin A.N. Kharlanov D.I. Kochubey N. Bogdanchikova A.Y. Stakheev (2002) J. Mol. Struct. 642 129 Occurrence Handle10.1016/S0022-2860(02)00402-7 Occurrence Handle1:CAS:528:DC%2BD38XpsVeksLc%3D

    Article  CAS  Google Scholar 

  56. A.N. Pestryakov V.V. Lunin A.N. Kharlanov N.E. Bogdanchikova I.V. Tuzovskaya (2003) Eur. Phys. J. D 24 307 Occurrence Handle10.1140/epjd/e2003-00111-0 Occurrence Handle1:CAS:528:DC%2BD3sXntFehtL0%3D Occurrence Handle2003EPJD...24..307P

    Article  CAS  ADS  Google Scholar 

  57. C. Sze E. Gulari B.G. Demczyk (1998) Mater. Lett. 36 11 Occurrence Handle10.1016/S0167-577X(97)00289-9 Occurrence Handle1:CAS:528:DyaK1cXjvFOhtbo%3D

    Article  CAS  Google Scholar 

  58. M. Haruta, T. Kobayashi, S. Iijima, F. Delannay, in: Proceedings 9th Int. Congr. Catal., Calgary, 2, eds. M.J. Phillips and M Ternan, (The Chemical Institute of Canada, Ottawa, 1988) p. 1206

  59. L. Guczi K. Frey A. Beck G. Petõ C.S. Daroóczi N. Kruse S. Chenakin (2005) Appl. Catal. A 291 116 Occurrence Handle10.1016/j.apcata.2005.02.044 Occurrence Handle1:CAS:528:DC%2BD2MXosVWqurk%3D

    Article  CAS  Google Scholar 

  60. H. Liu A.I. Kozlov A.P. Kozlova T. Shido Y. Iwasawa (1999) Phys. Chem. Chem. Phys. 1 2851 Occurrence Handle10.1039/a901358j Occurrence Handle1:CAS:528:DyaK1MXktlelsbo%3D

    Article  CAS  Google Scholar 

  61. G.C. Bond D.T. Thompson (1999) Catal. Rev. Sci. Eng. 41 319 Occurrence Handle10.1081/CR-100101171 Occurrence Handle1:CAS:528:DyaK1MXmvFehsLk%3D

    Article  CAS  Google Scholar 

  62. H. Zhu C. Liang W. Yan S.H. Overbury S. Dai (2006) J. Phys. Chem. B 110 10842 Occurrence Handle16771335 Occurrence Handle10.1021/jp060637q Occurrence Handle1:CAS:528:DC%2BD28XksValur4%3D

    Article  PubMed  CAS  Google Scholar 

  63. W. Deng, Ph.D thesis, Tufts University, in progress

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Flytzani-Stephanopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Carpenter, C., Yi, N. et al. Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions. Top Catal 44, 199–208 (2007). https://doi.org/10.1007/s11244-007-0293-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-0293-9

Keywords

Navigation