Skip to main content
Log in

Modeling gold/iron oxide interface system

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

The effect of gold particle size and Au/FeO x interface on the electronic properties and catalytic activity using samples of Au/SiO2/Si(100), Au/FeO x /SiO2/Si(100), FeO x /Au/SiO2/Si(100) has been modelled. Nanosize gold particles of varying size were fabricated by deposition of a 10 nm thick gold film onto SiO2/Si(100) substrate by electron beam evaporation followed by modification using low energy Ar+ ion bombardment or Ar+ ion implantation. These modifications formed Au islands of decreasing size accompanied by the strong redistribution of the Au 5d valence band structure determined by ultraviolet and X-ray photoelectron spectroscopy (UPS, XPS) and increased activity in catalytic CO oxidation. The gold/iron oxide interface was prepared by deposition of iron oxide using pulsed laser deposition (PLD). The structural properties of gold and iron oxide were characterized by XPS, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS). Generally, the formation of gold/iron oxide interface increases the catalytic activity in CO oxidation regardless of the sequence of deposition, namely either Au/FeO x /SiO2/Si(100) or FeO x /Au/SiO2/Si(100) is formed. Furthermore, the interface formed is operative in determining the catalytic activity even if gold is not exposed to the surface, but it is located underneath the iron oxide layer. This is a promoting effect of the Au nanoparticles, which is more efficient than that of the bulk like Au films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Pető G. Molnár G. Bogdányi L. Guczi (1994) Catal. Lett. 26 383 Occurrence Handle10.1007/BF00810612

    Article  Google Scholar 

  2. G. Bogdányi Z. Zsoldos G. Pető L. Guczi (1994) Surf. Sci. 306 L563 Occurrence Handle10.1016/0039-6028(94)90067-1

    Article  Google Scholar 

  3. M. Haruta (1997) Catal. Today 36 153 Occurrence Handle1:CAS:528:DyaK2sXitFCrtb0%3D Occurrence Handle10.1016/S0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  4. N.S. Phala G. Klatt E. Steen Particlevan S.A. French A.A. Sokol C.R.A. Catlow (2005) Phys. Chem. Chem. Phys. 7 2440 Occurrence Handle1:CAS:528:DC%2BD2MXltFKjsrw%3D Occurrence Handle10.1039/b501266j

    Article  CAS  Google Scholar 

  5. T.V. Choudary D.W. Goodman (2002) Topics Catal. 21 25 Occurrence Handle10.1023/A:1020595713329

    Article  Google Scholar 

  6. Sh.K. Shaikhutdinov R. Meyer M. Naschitzki M. Baumer H.-J. Freund (2003) Catal. Lett. 86 211 Occurrence Handle1:CAS:528:DC%2BD3sXhslWhurk%3D Occurrence Handle10.1023/A:1022616102162

    Article  CAS  Google Scholar 

  7. T. Bar T. Visart Bocarmé Particlede B.E. Nieuwenhuys N. Kruse (2001) Catal. Lett. 74 IssueID3/4 127 Occurrence Handle1:CAS:528:DC%2BD3MXmsFyqs7s%3D Occurrence Handle10.1023/A:1016685130974

    Article  CAS  Google Scholar 

  8. D. Horváth L. Tóth L. Guczi (2000) Catal. Lett. 67 117 Occurrence Handle10.1023/A:1019073723384

    Article  Google Scholar 

  9. L. Guczi D. Horváth Z. Pászti G. Pető (2002) Catal. Today 72 101 Occurrence Handle1:CAS:528:DC%2BD38XisV2jtb0%3D Occurrence Handle10.1016/S0920-5861(01)00483-7

    Article  CAS  Google Scholar 

  10. L. Guczi D. Horváth Z. Pászti L. Tóth Z.E. Horváth A. Karacs G. Pető (2000) J. Phys. Chem. B 104 3183 Occurrence Handle1:CAS:528:DC%2BD3cXhtVOnu7s%3D Occurrence Handle10.1021/jp992662k

    Article  CAS  Google Scholar 

  11. L. Guczi, Z. Pászti and G. Pető, in: Nanotechnology in Catalysis, eds. G. A. Somorjai, S. Hermans and B. Zhang (Kluwer Publ. Co., Amsterdam, 2003)

  12. L. Guczi G. Pető A. Beck K. Frey O. Geszti G. Molnár C. Daróczi (2003) J. Am. Chem. Soc. 125 4332 Occurrence Handle1:CAS:528:DC%2BD3sXhvF2ls7g%3D Occurrence Handle10.1021/ja0213928

    Article  CAS  Google Scholar 

  13. L. Guczi K. Frey A. Beck G. Petõ C. Daróczi N. Kruse S. Chenakin (2005) Appl. Catal. A 291 116 Occurrence Handle1:CAS:528:DC%2BD2MXosVWqurk%3D Occurrence Handle10.1016/j.apcata.2005.02.044

    Article  CAS  Google Scholar 

  14. G. Pető G.L. Molnár Z. Pászti O. Geszti A. Beck L. Guczi (2002) Mater. Sci. Eng. C 19 95 Occurrence Handle10.1016/S0928-4931(01)00449-0

    Article  Google Scholar 

  15. A.S. Eppler G. Rupprechter L. Guczi G.A. Somorjai (1997) J. Phys. Chem. B 101 9973 Occurrence Handle1:CAS:528:DyaK2sXntVymsLk%3D Occurrence Handle10.1021/jp972818l

    Article  CAS  Google Scholar 

  16. Z. Pászti Z.E. Horváth G. Pető A. Karacs L. Guczi (1997) Appl. Surf. Sci. 109/110 67 Occurrence Handle10.1016/S0169-4332(96)00908-7

    Article  Google Scholar 

  17. R. Serna T. Missana C.N. Afonso J.M. Ballesteros A.K. Petford-Long R.C. Doole (1998) Appl. Phys. A 66 43 Occurrence Handle1:CAS:528:DyaK1cXovFKj Occurrence Handle10.1007/s003390050635

    Article  CAS  Google Scholar 

  18. G.C. Bond D.T. Thompson (2000) Gold Bull. 33 41 Occurrence Handle1:CAS:528:DC%2BD3MXmsFKgsw%3D%3D

    CAS  Google Scholar 

  19. J.T. Cheung H. Sankur (1988) CRC Crit. Rev. Solid-State Mater. Sci. 15 63 Occurrence Handle1:CAS:528:DyaL1MXmtVGltb8%3D

    CAS  Google Scholar 

  20. T. Belmonte J.M. Thiébaut D. Mézerette (2002) J. Phys. D: Appl. Phys. 35 1919 Occurrence Handle1:CAS:528:DC%2BD38XmvFCksbs%3D Occurrence Handle10.1088/0022-3727/35/16/304

    Article  CAS  Google Scholar 

  21. C. Hardacre R.M. Ormerod R.M. Lambert (1994) J. Phys. Chem. 98 10901 Occurrence Handle1:CAS:528:DyaK2cXmtl2hsrc%3D Occurrence Handle10.1021/j100093a036

    Article  CAS  Google Scholar 

  22. Z.M. Liu M.A. Vannice (1997) Catal. Lett. 43 51 Occurrence Handle1:CAS:528:DyaK2sXhtVehsbk%3D Occurrence Handle10.1023/A:1018918017777

    Article  CAS  Google Scholar 

  23. K.B. Lewis S.T. Oyama G.A. Somorjai (1990) Surf. Sci. 233 75 Occurrence Handle1:CAS:528:DyaK3cXltl2gtbs%3D Occurrence Handle10.1016/0039-6028(90)90177-A

    Article  CAS  Google Scholar 

  24. K.B. Lewis S.T. Oyama G.A. Somorjai (1991) Appl. Surf. Sci. 52 241 Occurrence Handle1:CAS:528:DyaK38XmvVSrtw%3D%3D Occurrence Handle10.1016/0169-4332(91)90053-M

    Article  CAS  Google Scholar 

  25. G.H. Vurens V. Maurice M. Salmeron G.A. Somorjai (1992) Surf. Sci. 268 170 Occurrence Handle1:CAS:528:DyaK38Xis1eisrg%3D Occurrence Handle10.1016/0039-6028(92)90960-E

    Article  CAS  Google Scholar 

  26. G.A. Somorjai (2005) Catal. Lett. 101 1 Occurrence Handle1:CAS:528:DC%2BD2MXjtlyms7o%3D Occurrence Handle10.1007/s10562-005-0112-5

    Article  CAS  Google Scholar 

  27. X. Ji A. Zuppero J.M. Gidwani G.A. Somorjai (2005) Nano Lett. 5 753 Occurrence Handle1:CAS:528:DC%2BD2MXhsFWgsb8%3D Occurrence Handle10.1021/nl050241a

    Article  CAS  Google Scholar 

  28. X. Ji A. Zuppero J.M. Gidwani G.A. Somorjai (2005) J. Am. Chem. Soc. 127 5792 Occurrence Handle1:CAS:528:DC%2BD2MXislersbs%3D Occurrence Handle10.1021/ja050945m

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guczi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guczi, L., Pászti, Z., Frey, K. et al. Modeling gold/iron oxide interface system. Top Catal 39, 137–143 (2006). https://doi.org/10.1007/s11244-006-0049-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0049-y

Keywords

Navigation