Skip to main content
Log in

Two trinuclear Ru(II) complexes of hetero-tritopic bridging ligands: synthesis, characterization, theoretical calculations, photophysical and electrochemical properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two hetero-tritopic bridging ligands L1 and L2 based on 2,2′-bipyridine and 1,10-phenanthroline moieties, and their corresponding Ru(II) complexes [{Ru(bpy)2}33−L1)](PF6)6 and [{Ru(bpy)2}33−L2)](PF6)6 (bpy = 2,2′-bipyridine), were synthesized. The molecular structures of both complexes were deduced by 1H NMR, ESI-MS, ESI-HRMS, elemental analyses, and IR spectroscopy. Quantum calculations on the free bridging ligands and their complexes are also presented. Both complexes display MLCT absorptions at around 454 nm, and emissions at around 613 nm in CH3CN solution at room temperature and at around 590 nm in EtOH–MeOH glassy matrix at 77 K. Cyclic and differential pulse voltammetry studies of both complexes reveal one reversible Ru(II)-centered oxidation and three reversible ligand-centered reductions, in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ma H, Li X, Yan T, Li Y, Liu H, Zhang Y, Wu D, Du B, Wei Q (2016) ACS Appl Mater Interfaces 8:10121–10127

    Article  CAS  Google Scholar 

  2. Sun W, Sun S, Jiang N, Wang H, Peng X (2015) Organometallics 34:3385–3389

    Article  CAS  Google Scholar 

  3. Nguyen VQ, Sun X, Lafolet F, Audibert JF, Miomandre F, Lemercier G, Loiseau F, Lacroix JC (2016) J Am Chem Soc 138:9381–9384

    Article  CAS  Google Scholar 

  4. Sahara G, Kumagai H, Maeda K, Kaeffer N, Artero V, Higashi M, Abe R, Ishitani O (2016) J Am Chem Soc 138:1415–14158

    Article  Google Scholar 

  5. Nakada A, Koike K, Nakashima T, Morimoto T, Ishitani O (2015) Inorg Chem 54:1800–1807

    Article  CAS  Google Scholar 

  6. Kumar P, Joshi C, Srivastava AK, Gupta P, Boukherroub R, Jain SL (2016) ACS Sustain Chem Eng 4:69–75

    Article  CAS  Google Scholar 

  7. Chao H, Qiu ZR, Cai LR, Zhang H, Li XY, Wong KS, Ji LN (2003) Inorg Chem 42:8823–8830

    Article  CAS  Google Scholar 

  8. Borgstrom M, Ott S, Lomoth R, Bergquist J, Hammarstrom L, Johansson O (2006) Inorg Chem 45:4820–4829

    Article  Google Scholar 

  9. Stephanie D, Eric D, Cecile M, Andree KM, Pascal D (2003) Tetrahedron Lett 44:8379–8382

    Article  Google Scholar 

  10. Gauthier IG, Odobel F, Alebbi M, Argazzi R, Costa E, Bignozzi CA, Qu P, Meyer GJ (2002) Inorg Chem 40:6073–6079

    Article  Google Scholar 

  11. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  12. Fan SH, Zhang AG, Ju CC, Gao LH, Wang KZ (2010) Inorg Chem 49:3752–3763

    Article  CAS  Google Scholar 

  13. Goudy V, Maynadié J, Goff XL, Meyer D, Fontecave M (2016) New J Chem 40:1704–1714

    Article  CAS  Google Scholar 

  14. Oyler KD, Coughlin FJ, Bernhard S (2007) J Am Chem Soc 129:210–217

    Article  CAS  Google Scholar 

  15. Amouyal E, Homsi A, Chambron JC, Sauvage JP (1990) J Chem Soc Dalton Trans 6:1841–1845

    Article  Google Scholar 

  16. Watts RJ, Crosby GA (1972) J Am Chem Soc 94:2606–2614

    Article  CAS  Google Scholar 

  17. Jukes RTF, Biljana B, Peter B, Luisa DC, Frantisek H (2009) Inorg Chem 48:1711–1721

    Article  CAS  Google Scholar 

  18. Coronado E, Gavina P, Tatay S, Groarke R, Vos JG (2010) Inorg Chem 49:6897–6903

    Article  CAS  Google Scholar 

  19. Bilakhiya AK, Tyagi B, Paul P (2002) Inorg Chem 41:3830–3842

    Article  CAS  Google Scholar 

  20. Juris A, Prodi L, Harriman A, Ziessel R, Hissler M, El-ghayoury A, Wu F, Riesgo EC, Thummel RP (2000) Inorg Chem 39:3590–3598

    Article  CAS  Google Scholar 

  21. Jukes RTF, Vincenzo A, Frantisek H, Peter B, Luisa DC (2004) Inorg Chem 43:2779–2792

    Article  CAS  Google Scholar 

  22. Knoll JD, Arachchige SM, Wang G, Rangan K, Miao R, Higgins SLH, Okyere B, Zhao M, Croasdale P, Magruder K, Sinclair B, Wall C, Brewer KJ (2011) Inorg Chem 50:8850–8860

    Article  CAS  Google Scholar 

  23. Charbonnière LJ, Ziessel RF, Sams CA (2003) Inorg Chem 42:3466–3478

    Article  Google Scholar 

  24. Boyde S, Strouse GF, Jones WE, Meyer TJ (2010) J Am Chem Soc 112:7395–7396

    Article  Google Scholar 

  25. Leveque J, Elias B, Moucheron C, Mesmaeker AKD (2005) Inorg Chem 44:393–400

    Article  CAS  Google Scholar 

  26. Sautter A, Kaletas BK, Schmid DG, Dobrawa R, Zimine M, Jung G, van Stokkum IHM, De Cola L, Williams RM, Würthner F (2005) J Am Chem Soc 127:6719–6729

    Article  CAS  Google Scholar 

  27. Baitalik S, Wang X, Schmehl RH (2004) J Am Chem Soc 126:16304–16305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (21261019) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feixiang Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., He, C. & Yu, S. Two trinuclear Ru(II) complexes of hetero-tritopic bridging ligands: synthesis, characterization, theoretical calculations, photophysical and electrochemical properties. Transit Met Chem 42, 395–403 (2017). https://doi.org/10.1007/s11243-017-0142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0142-z

Keywords

Navigation