Skip to main content
Log in

A kinetic study of the oxidations of 2-mercaptoethanol and 2-mercaptoethylamine by heteropoly 11-tungsto-1- vanadophosphate in aqueous acidic medium

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of 2-mercaptoethanol and 2-mercaptoethylamine by the heteropoly 11-tungsto-1- vanadophosphate anion, [PVVW11O40]4−, have been studied spectrophotometrically in aqueous perchloric acid at 25 °C. EPR and optical studies show that [PVVW11O40]4− is reduced to the one-electron reduced heteropoly blue, [PVIVW11O40]5−, whilst the thiols are oxidized to the corresponding disulphides, RSSR. Spectrophotometric titrations show that the stoichiometry of both reactions is 1:1. At constant pH, the reactions show simple second-order kinetics with first-order dependence of rate on both [oxidant] and [thiol]. At constant [thiol], the rate of the reaction increases with increasing pH. Plots of kobs/[thiol]t versus 1/[H+] are linear with finite intercepts, showing that both the undissociated thiol (RSH) and thiolate ion (RS) are reactive species. Generation of RS· from RSH proceeds via a separated-concerted proton–electron transfer mechanism. The reaction of thiolate ion is a simple outer-sphere electron transfer reaction. By applying the Marcus theory, the self-exchange rate constants for the couples HOCH2CH2S·/HOCH2CH2S and H3N+CH2CH2S·/H3N+CH2CH2S were evaluated as 3 × 109 and 2.2 × 108 M−1 s−1, respectively, at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Hand CE, Honek JF (2005) J Nat Prod 68:293

    Article  CAS  Google Scholar 

  2. Messmore JM, Holmgren SK, Grilley JE, Raines RT (2000) Bioconjugate Chem 11:408

    Article  CAS  Google Scholar 

  3. Shena Y, Zhonga L, Markwell S, Cao D (2010) Biochimie 92:530

    Article  Google Scholar 

  4. Jackson MJ (2005) Philos Trans R Soc London Ser B 360:2285

    Article  CAS  Google Scholar 

  5. Kemp M, Go YM, Jones DP (2008) Free Radical Biol Med 44:921

    Article  CAS  Google Scholar 

  6. Giles GI, Jacop C (2002) Biol Chem 383:375

    Article  CAS  Google Scholar 

  7. Singh BK (2005) Asian J Chem 17:1

    CAS  Google Scholar 

  8. Adari KK, Nowduri A, Vani P (2006) Transit Met Chem 31:745

    Article  CAS  Google Scholar 

  9. Paul PC, Tracey AS (1997) J Biol Inorg Chem 2:644

    Article  CAS  Google Scholar 

  10. Wang X, Stanbury DM (2008) Inorg Chem 47:1224

    Article  CAS  Google Scholar 

  11. Hung M, Stanbury DM (2005) Inorg Chem 44:3541

    Article  CAS  Google Scholar 

  12. Sami P, Venkateshwari K, Mariselvi N, Sarathi A, Rajasekaran K (2009) Transit Met Chem 34:733

    Article  CAS  Google Scholar 

  13. Sami P, Venkateshwari K, Mariselvi N, Sarathi A, Rajasekaran K (2010) Transit Met Chem 35:137

    Article  CAS  Google Scholar 

  14. Saha B, Hung M, Stanbury DM (2002) Inorg Chem 41:5538

    Article  CAS  Google Scholar 

  15. Costentin C, Evans DH, Robert M, Savéant JM, Sing PS (2005) J Am Chem Soc 127:12490

    Article  CAS  Google Scholar 

  16. Bonin J, Costentin C, Louault C, Robert M, Routier M, Savéant JM (2010) Proc Natl Acad Sci USA 107:3367

    Article  CAS  Google Scholar 

  17. Kapoor RC, Chohan RK, Sinha BP (1971) J Phys Chem 75:2036

    Article  Google Scholar 

  18. Ayoko GA, Olatunji MA (1983) Polyhedron 2:577

    Article  CAS  Google Scholar 

  19. Chakraborty M, Mandal PC, Mukhopadhyay S (2012) Polyhedron 45:213

    Article  CAS  Google Scholar 

  20. Chakraborty M, Mandal PC, Mukhopadhya S (2013) Inorg Chim Acta 398:77

    Article  CAS  Google Scholar 

  21. Chakrabarty S, Banerjee R (2014) Int J Chem Kinetics 47:13

    Article  Google Scholar 

  22. Mishra R, Mukhopadhyay S, Banerjee R (2010) Dalton Trans 39:2692

    Article  CAS  Google Scholar 

  23. Sharma VK, Luther GW III, Millero FJ (2011) Chemosphere 82:1083

    Article  CAS  Google Scholar 

  24. Vairalakshmi M, Raj V, Sami P, Rajasekaran K (2011) Transit Met Chem 36:875

    Article  CAS  Google Scholar 

  25. Sami P, Mariselvi N, Venkateshwari K, Vairalakshmi M, Sarathi A, Rajasekaran K (2010) Transit Met Chem 35:563

    Article  CAS  Google Scholar 

  26. Sami P, Anand TD, Premanathan M, Rajasekaran K (2010) Transit Met Chem 35:1019

    Article  CAS  Google Scholar 

  27. Smith DP, Pope MT (1993) Inorg Chem 12:331

    Article  Google Scholar 

  28. Smith DP, So H, Bender J, Pope MT (1973) Inorg Chem 12:685

    Article  CAS  Google Scholar 

  29. Altenau JJ, Pope MT, Prados RA, So H (1975) Inorg Chem 14:417

    Article  CAS  Google Scholar 

  30. Edsall JT, Wyman J (1958) Biophysical chemistry. Academic Press Inc, New York

    Google Scholar 

  31. Warren JJ, Tronic TA, Mayer JM (2011) Chem Rev 110:6951

    Google Scholar 

  32. Ayoko GA, Iyun JF, Ekubo AT (1993) Transit Met Chem 18:6

    Article  CAS  Google Scholar 

  33. Bhattarai N, Stanbury DM (2012) Inorg Chem 51:13303

    Article  CAS  Google Scholar 

  34. Singh B, Das RS, Banerjee R, Mukhopadhyay S (2014) Inorg Chim Acta 418:51

    Article  CAS  Google Scholar 

  35. Surdhar PS, ArmStrong DA (1987) J Phys Chem 91:6532

    Article  CAS  Google Scholar 

  36. Mezyk SP, Armstory DA (1999) J Chem Soc Perkin Trans 2:1411

    Article  Google Scholar 

  37. Karmann W, Granzow A, Meissner G, Henglein A (1969) Int J Radiat Phys Chem 1:395

    Article  CAS  Google Scholar 

  38. Marcus RA (1963) J Phys Chem 67:853

    Article  CAS  Google Scholar 

  39. Marcus RA (1968) J Phys Chem 72:891

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors P.S and K.S thank the University Grants Commission, New Delhi, India, for the award of major research project (F. No. 42-349/2013(SR)) and financial assistance. We also thank Sophisticated Analytical Instrumentation Facility, CECRI Karaikudi, for EPR facilities and Managing Board, Virudhunagar Hindu Nadars’ Senthikumara Nadar College, Virudhunagar for infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnusamy Sami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugaprabha, T., Selvakumar, K., Rajasekaran, K. et al. A kinetic study of the oxidations of 2-mercaptoethanol and 2-mercaptoethylamine by heteropoly 11-tungsto-1- vanadophosphate in aqueous acidic medium. Transition Met Chem 41, 77–85 (2016). https://doi.org/10.1007/s11243-015-9998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9998-y

Keywords

Navigation