Skip to main content
Log in

Studies on electron transfer reactions: oxidation of phenol and ring-substituted phenols by heteropoly 11-tungstophosphovanadate(V) in aqueous acidic medium

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of phenol and a few ring-substituted phenols by heteropoly 11-tungstophosphovanadate(V), [PVVW11O40]4− (HPA) have been studied spectrophotometrically in aqueous acidic medium containing perchloric acid and also in acetate buffers of several pH values at 25 °C. EPR and optical studies show that HPA is reduced to the one-electron reduced heteropoly blue (HPB) [PVIVW11O40]5−. In acetate buffers, the build up and decay of the intermediate biphenoquinone show the generation of phenoxyl radical (ArO·) in the rate-determining step. At constant pH, the reaction shows simple second-order kinetics with first-order dependence of rate on both [ArOH] and [HPA]. At constant [ArOH], the rate of the reaction increases with increase in pH. The plot of apparent second-order rate constant, k 2, versus 1/[H+] is linear with finite intercept. This shows that both the undissociated phenol (ArOH) and the phenoxide ion (ArO) are the reactive species. The ArO–HPA reaction is the dominant pathway in acetate buffer and it proceeds through the OH ion triggered sequential proton transfer followed by electron transfer (PT-ET) mechanism. The rate constant for ArO–HPA reaction, calculated using Marcus theory, agrees fairly well with the experimental value. The reactivity of substituted phenoxide ions correlates with the Hammett σ+ constants, and ρ value was found to be −4.8. In acidic medium, ArOH is the reactive species. Retardation of rate for the oxidation of C6H5OD in D2O indicates breaking of the O–H bond in the rate-limiting step. The results of kinetic studies show that the HPA-ArOH reaction proceeds through a concerted proton-coupled electron transfer mechanism in which water acts as proton acceptor (separated-CPET).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Gunasekar K, Anbarasu K (2009) Croat Chem Acta 82:819

    CAS  Google Scholar 

  2. Vanholime R, Morreel K, Ralph J, Boerjan W (2008) Curr Opin Plant Biol 11:278

    Article  Google Scholar 

  3. Huynh MHV, Meyer TJ (2007) Chem Rev 107:5004

    Article  CAS  Google Scholar 

  4. Webster RD (2007) Acc Chem Res 40:251

    Article  CAS  Google Scholar 

  5. Lansky DE, Goldbreg DP (2006) Inorg Chem 45:5119

  6. Yiu DTY, Lee MFW, Lam WWY, Lau T (2003) Inorg Chem 42:1225

    Article  CAS  Google Scholar 

  7. Huang H, Sommerfeld D, Dunn BC, Eyring EH, Lloyd CR (2001) J Phys Chem A 105:3536

    Article  CAS  Google Scholar 

  8. Ajlouni AA, Bakac A, Espenson JH (1993) Inorg Chem 32:5792

    Article  Google Scholar 

  9. Nemes A, Bakac A (2001) Inorg Chem 40:746

  10. Bonin J, Costentin C, Louault C, Robert M, Routier M, Saveant JM (2010) Proc Nat Aca Sci USA 107:3367

    Article  CAS  Google Scholar 

  11. Song N, Stanbury DM (2008) Inorg Chem 47:11458

    Article  CAS  Google Scholar 

  12. Costentin C, Loualt C, Robert M, Saveant JM (2009) Proc Nat Aca Sci USA 106:18143

    Article  CAS  Google Scholar 

  13. Galli C, Gentilli P, Pontes ASN, Gamelas JAF, Evtuguin DV (2007) New J Chem 31:1461

    Article  CAS  Google Scholar 

  14. Kim YS, Chang H, Kadla JF (2008) J Wood Chem Tec 28:1

    Article  CAS  Google Scholar 

  15. Sami P, Rajasekaran K (2009) J Chem Sci 121:155

    Article  CAS  Google Scholar 

  16. Sami P, Venkateshwari K, Mariselvi N, Sarathi A, Rajasekaran K (2009) Transit Met Chem 34:733

    Article  CAS  Google Scholar 

  17. Sami P, Venkateshwari K, Mariselvi N, Sarathi A, Rajasekaran K (2010) Transit Met Chem 35:137

    Article  CAS  Google Scholar 

  18. Sami P, Mariselvi N, Venkateshwari K, Vairalakshmi M, Sarathi A, Rajasekaran K (2010) Transit Met Chem 35:563

    Article  CAS  Google Scholar 

  19. Sami P, Mariselvi N, Venkateshwari K, Sarathi A, Rajasekaran K (2010) J Chem Sci 122:335

    Article  CAS  Google Scholar 

  20. Sami P, Durai Anand T, Premanathan M, Rajasekaran K (2010) Transit Met Chem 35:1019

    Article  CAS  Google Scholar 

  21. Domaille PJ (1984) J Am Chem Soc 106:7677

    Article  CAS  Google Scholar 

  22. Smith DP, So H, Bender J, Pope MT (1973) Inorg Chem 12:685

    Article  CAS  Google Scholar 

  23. Altenau JJ, Pope MT, Prados RA, So H (1975) Inorg Chem 14:417

    Article  CAS  Google Scholar 

  24. Bielski BHJ, Thomas MJ (1987) J Am Chem Soc 109:7761

    Article  CAS  Google Scholar 

  25. Hay AS (1969) J Org Chem 34:1160

    Article  CAS  Google Scholar 

  26. Rush JD, Cyr JE, Zhao Z, Bielski BH (1995) Free Radical Res 22:349

    Article  CAS  Google Scholar 

  27. Grigoriev VA, Hill CL, Weinstock IA (2001): Polyoxometalate oxidation of phenolic lignin models. In: ACS symposium series 785, oxidative delignification chemistry-fundamentals and catalysis, Washington, American Chemical Society, chap. 18, p 297

  28. Um IH, Hong YJ, Kwon DS (1977) Tedrahedron 53:5073

    Article  Google Scholar 

  29. Yuan X, Hualw G, Minsu L (2005) Biomed Environ Sci 18:281

    CAS  Google Scholar 

  30. Lee Y, Yoon J, Gunten UV (2005) Environ Sci Technol 39:8978

    Article  CAS  Google Scholar 

  31. Marcus RA (1963) J Phy Chem 67:853

    Article  CAS  Google Scholar 

  32. Marcus RA (1968) J Phy Chem 72:891

    Article  CAS  Google Scholar 

  33. Marcus RA, Eyring H (1964) Annu Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  34. Merenyi G, Lind J, Jhonson M (1993) J Am Chem Soc 115:4945

    Google Scholar 

  35. Schuler RH, Zemel H, Neta P, Fessenden RW (1976) J Am Chem Soc 98:3825

    Article  CAS  Google Scholar 

  36. Lind J, Shen X, Eriksen TE, Merenyi G (1990) J Am Chem Soc 112:479

    Article  CAS  Google Scholar 

  37. Novoselova IM, Barkovskii VF (1975) Zhur Neorg Khim 20: 1844

Download references

Acknowledgments

The authors P. S and K. R thank University Grants Commission, New Delhi, India, for the award of major research project and financial assistance. The authors thank Professor D. M. Stanbury, Auburn University, USA, for helpful discussions during the preparation of the manuscript. We also thank Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology, Bombay, for EPR facilities and Managing Board, Virudhunagar Hindu Nadars’ Senthikumara Nadar College, Virudhunagar, for infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasi Rajasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vairalakshmi, M., Raj, V., Sami, P. et al. Studies on electron transfer reactions: oxidation of phenol and ring-substituted phenols by heteropoly 11-tungstophosphovanadate(V) in aqueous acidic medium. Transition Met Chem 36, 875–882 (2011). https://doi.org/10.1007/s11243-011-9544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9544-5

Keywords

Navigation