Skip to main content
Log in

Kinetics and mechanism of the formation of silver nanoparticles by reduction of silver (I) with maltose in the presence of some active surfactants in aqueous medium

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of the formation of silver nanoparticles by reduction of Ag+ with maltose were studied spectrophotometrically by monitoring the absorbance change at 412 nm in aqueous and micellar media at a temperature range 45–60 °C. The reaction was carried out under pseudo-first-order conditions by taking the [maltose] (>tenfold) the [Ag+]. A mechanism of the reaction between silver ion and maltose is proposed, and the rate equation derived from the mechanism was consistent with the experimental rate law. The effect of surfactants, namely cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecyl sulfate (SDS, an anionic surfactant), on the reaction rate has been studied. The enthalpy and the entropy of the activation were calculated using the transition state theory equation. The particle size of silver sols was characterized by transmission electron microscopy and some physiochemical and spectroscopic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anil-Kumar S, Abyanesh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmed M, Khan MI (2007) Biotechnol Lett 29:439

    Article  CAS  Google Scholar 

  2. Schultz DA (2003) Curr Opin Biotech 14:13

    Article  CAS  Google Scholar 

  3. Gopinath K, Gowri S, Arumugam A (2013) J Nanost Chem 3:68

    Article  Google Scholar 

  4. Nam JM, Thaxton CS, Mirkin CA (2003) Science 301:1884

    Article  CAS  Google Scholar 

  5. Haneda M, Kintaichi Y, Inaba M, Hamada H (1998) Catal Today 42:127

    Article  CAS  Google Scholar 

  6. Sharma VK, Yngard RA, Lin Y (2009) Adv Colloid Interface Sci 145:83

    Article  CAS  Google Scholar 

  7. Sotiriou GA, Pratsinis SE (2010) Environ Sci Technol 44:5649

    Article  CAS  Google Scholar 

  8. Wigginton NS, de Titta A, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJF, Bernier-Latmani R (2010) Environ Sci Technol 44:2163

    Article  CAS  Google Scholar 

  9. Chen W, Cai W, Zhang L, Wang G (2001) J Colloid Interface Sci 238:291

    Article  CAS  Google Scholar 

  10. Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Mater Chem Phys 94:148

    Article  CAS  Google Scholar 

  11. Patakfalvi R, Viranyl Z, Dekany I (2004) Colloid Polm Sci 283:299

    Article  CAS  Google Scholar 

  12. Kiim M, Byun JW, Shin DS, Lee YS (2009) Mat Res Bull 44:334

    Article  Google Scholar 

  13. Al-Thabati SA, Obaid AY, Al-Youbi AO (2009) Colloid Surf B Biointerface 73:284

    Article  Google Scholar 

  14. Khan Z, Al-Thabati SA, Obaid AY, Al-Youbi AO (2010) Colloid Surf B Biointerface 78:143

    Google Scholar 

  15. Sahoo PK, Kalyan Kamal SS, Jagadeesh Kumar T, Sreedhar B, Singh AK, Srivastava SK (2010) Def Sci 59:447

    Google Scholar 

  16. Khan Z, Al-Thabati SA, Obaid AY, Khan ZA, Al-Youbi AO (2012) J Colloid Interface Sci 367:101

    Article  CAS  Google Scholar 

  17. Linnert T, Mulvaney P, Henglein A (1990) J Am Chem Soc 112:4657

    Article  CAS  Google Scholar 

  18. Henglein A (1998) Chem Mater 10:444

    Article  CAS  Google Scholar 

  19. Wiley B, Sun Y, Mayers B (2005) Chem Eur J 11:454

    Article  CAS  Google Scholar 

  20. Kapoor S, Lawless D, Kennepohl P, Meisel D, Serpone N (1994) Langmuir 10:3018

    Article  CAS  Google Scholar 

  21. Esumi K, Hosoyo T, Yamahira A, Torigoe K (2000) J Colloid Interface Sci 226:346

    Article  CAS  Google Scholar 

  22. Sharma VK, Yngard RA, Lin Y (2009) Adv Colloid Interface Sci 145:83

    Article  CAS  Google Scholar 

  23. Henglein A (1993) J Phys Chem 97:5457

    Article  CAS  Google Scholar 

  24. Heinzman SW, Gamen B (1982) J Am Chem Soc 104:6801

    Article  CAS  Google Scholar 

  25. Tan Y, Li Y, Zhu D (2003) J Colloid Interface Sci 258:244

    Article  CAS  Google Scholar 

  26. El-Shishtawy RM, Asiri AM, Al-Otabi MM (2011) Spectrochim Acta A 79:1505

    Article  Google Scholar 

  27. Ershov BG, Janata E, Henglein A, Fojtik A (1993) J Phys Chem 97:4589

    Article  CAS  Google Scholar 

  28. Wasowicz T, Michalik R (1991) J Phys Chem 37:427

    CAS  Google Scholar 

  29. Menger FM, Portony CE (1967) J Am Chem Soc 89:4698

    Article  CAS  Google Scholar 

  30. Bunton CA, Savelli G (1986) Adv Phys Org Chem 22:213

    CAS  Google Scholar 

  31. Bunton CA (1997) J Mol Liq 72:231

    Article  CAS  Google Scholar 

  32. Weaver MJ, Yee EL (1980) Inorg Chem 19:1936

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (130-010-D1433). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Ewais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewais, H.A. Kinetics and mechanism of the formation of silver nanoparticles by reduction of silver (I) with maltose in the presence of some active surfactants in aqueous medium. Transition Met Chem 39, 487–493 (2014). https://doi.org/10.1007/s11243-014-9823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9823-z

Keywords

Navigation