Skip to main content
Log in

Kinetics and mechanism of oxidation of cis-diaquabis(glycinato)chromium(III) by periodate ion in aqueous solutions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of cis-[CrIII(gly)2(H2O)2]+ (gly = glycinate) by \( {\text{IO}}_{ 4}^{ - } \) has been studied in aqueous solutions. The reaction is first order in the chromium(III) complex concentration. The pseudo-first-order rate constant, k obs, showed a small change with increasing \( \left[ {{\text{IO}}_{ 4}^{ - } } \right] \). The pseudo-first-order rate constant, k obs, increased with increasing pH, indicating that the hydroxo form of the chromium(III) complex is the reactive species. The reaction has been found to obey the following rate law: \( {\text{Rate}} = 2k^{\text{et}} K_{ 3} K_{ 4} \left[ {{\text{Cr}}\left( {\text{III}} \right)} \right]_{t} \left[ {{\text{IO}}_{ 4}^{ - } } \right]/\left\{ {\left[ {{\text{H}}^{ + } } \right] + K_{ 3} + K_{ 3} K_{ 4} \left[ {{\text{IO}}_{ 4}^{ - } } \right]} \right\} \). Values of the intramolecular electron transfer constant, k et, the first deprotonation constant of cis-[CrIII(gly)2(H2O)2]+, K 3 and the equilibrium formation constant between cis-[CrIII(gly)2(H2O)(OH)] and \( {\text{IO}}_{ 4}^{ - } \), K 4, have been determined. An inner-sphere mechanism has been proposed for the oxidation process. The thermodynamic activation parameters of the processes involved are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mertz W (1993) J Nutr 123:626

    CAS  Google Scholar 

  2. Anderson RA, Brantner JH, Polansky M (1978) J Agric Food Chem 26:1219

    Article  CAS  Google Scholar 

  3. Toepfer EW, Mertz W, Polansky M, Roginsky EE, Wolf WR (1977) J Agric Food Chem 25:162

    Article  CAS  Google Scholar 

  4. Mertz JB (2010) Dalton Trans 39:3787

    Article  Google Scholar 

  5. Stewart R (1969) Oxidation mechanisms, application to organic chemistry. Benjamin, Benjamin

    Google Scholar 

  6. Kasim AY, Sulfab Y (1977) Inorg Chim Acta 24:247

    Article  CAS  Google Scholar 

  7. Abu Elenin MH, Al-Shatti NA, Hussein MA, Sulfab Y (1990) Polyhedron 9:99

    Article  Google Scholar 

  8. Hussein MA, Abdel-Khalek AA, Sulfab Y (1983) J Chem Soc Dalton Trans 317

  9. Abdel-Khalek AA, Sulfab Y (1981) J Inorg Nucl Chem 43:3257

    Article  CAS  Google Scholar 

  10. Naik RM, Srivastava A, Tiwari AK, Yadav SB, Verma AK (2007) J Iran Chem Soc 4:63

    Article  CAS  Google Scholar 

  11. Kassim AY, Sulfab Y (1981) Inorg Chem 20(2):506

    Article  CAS  Google Scholar 

  12. Ali IH, Sulfab Y (2012) Int J Chem Kinet 44(11):729

    Article  CAS  Google Scholar 

  13. Abd El-Khalek AA, Elsemongy MM (1988) Bull Chem Soc Jpn 6:4407

    Article  Google Scholar 

  14. Al-Jallal NA, Sulfab Y (2004) Transition Met Chem 29:216

    Article  Google Scholar 

  15. Ewais HA, Khalid ESH, Abd El-Khalek AA (2001) Indian J Chem, Sect A 40A:410

    CAS  Google Scholar 

  16. Ewais HA, Abd El-Khalek AA (2004) J Chin Chem Soc 51:715

    Google Scholar 

  17. Abd El-Khalek AA, Elsemongy MM (1989) Transition Met Chem 14:206

    Article  CAS  Google Scholar 

  18. Ewais HA, Habib MA, Elroby SA (2010) Transition Met Chem 35:73

    Article  CAS  Google Scholar 

  19. Ewais HA, Dahman FD, Abd El-Khalek AA (2009) Chem Cent J 3(3):1

    Google Scholar 

  20. Ali IH, Sulfab Y (2011) Int J Chem Kinet 43(10):563

    CAS  Google Scholar 

  21. Kustin K, Lieberman EC (1964) J Phys Chem 68:3869

    Article  CAS  Google Scholar 

  22. Headlam HA, Weeks CL, Turner P, Hambley TW, PA. Lay PA (2001) Inorg Chem 40:5097

  23. Dillon CT, Lay PA, Binon AM, Dixon NE, Sulfab Y (2000) Aust J Chem 53:411

    Article  CAS  Google Scholar 

  24. Cooper JA, Blackwell LF, Buckley PD (1984) Inorg Chim Acta 92:23

    Article  CAS  Google Scholar 

  25. Kita E, Marai H, Muziol T, Lenert K (2011) Transition Met Chem 36:35

    Article  CAS  Google Scholar 

  26. Head FS, Standing HA (1952) J Chem Soc 1457

  27. Crouthamel CE, Meek HV, Martin DS, Banks CV (1949) J Am Chem Soc 71:3031

    Article  CAS  Google Scholar 

  28. Symons MCR (1955) J Chem Soc 2794

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousif Sulfab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, I.H., Sulfab, Y. Kinetics and mechanism of oxidation of cis-diaquabis(glycinato)chromium(III) by periodate ion in aqueous solutions. Transition Met Chem 38, 79–84 (2013). https://doi.org/10.1007/s11243-012-9663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9663-7

Keywords

Navigation