Skip to main content
Log in

Chromium(III) complexes with lutidinic acid: kinetic studies in HClO4 and NaOH solutions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Chromium(III)-lutidinato complexes of general formula [Cr(lutH) n (H2O)6−2n ]3−n (where lutH is N,O-bonded lutidinic acid anion) were obtained and characterized in solution. Acid-catalysed aquation of [Cr(lutH)3]0 leads to only one ligand dissociation, whereas base hydrolysis produces chromates(III) as a result of subsequent ligand liberation steps. The kinetics of the first ligand dissociation were studied spectrophotometrically, within the 0.1–1.0 M HClO4 and 0.4–1.0 M NaOH range. In acidic media, two reaction stages, the chelate-ring opening and the ligand dissociation, were characterized. The dependencies of pseudo-first-order rate constants on [H+] are as follows: k obs1 = k 1 + k −1/K 1[H+] and k obs2 = k 2 K 2[H+]/(1 + K 2[H+]), where k 1 and k 2 are the rate constants for the chelate-ring opening and the ligand dissociation, respectively, k −1 is the rate constant for the chelate-ring closure, and K 1 and K 2 are the protonation constants of the pyridine nitrogen atom and coordinated 2-carboxylate group in the one-end bonded intermediate, respectively. In alkaline media, the rate constant for the first ligand dissociation depends on [OH]: k obs1 = k OH(1) + k O[OH], where k OH(1) and k O are rate constants of the first ligand liberation from the hydroxo- and oxo-forms of the intermediate, respectively, and K 2 is an equilibrium constant between these two protolytic forms. Kinetic parameters were determined and a mechanism for the first ligand dissociation is proposed. The kinetics of the ligand liberation from [Cr(lut)(OH)4]3− were also studied and the values of the pseudo-first-order rate constants are [OH] independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Scheme 4

Similar content being viewed by others

References

  1. Vincent JB (2001) Polyherdon 20:1. doi:10.1016/S0277-5387(00)00624-0

    Article  CAS  Google Scholar 

  2. Trent LK, Tiedingcancel D (1995) J Sports Med 35:273

    CAS  Google Scholar 

  3. Berner TO, Murphy MM, Slesinski RS (2004) Food Chem Toxicol 42:1029. doi:10.1016/j.fct.2004.02.015

    Article  CAS  Google Scholar 

  4. Evans GW, Bowman TD (1992) J Inorg Biochem 46:243. doi:10.1016/0162-0134(92)80034-S

    Article  CAS  Google Scholar 

  5. Kita E, Gołembiewska K (2007) Transit Met Chem 32:56. doi:10.1007/s11243-006-0128-8

    Article  CAS  Google Scholar 

  6. Kita E, Marai H, Zając K (2008) Transit Met Chem 33:211. doi:10.1007/s11243-007-9025-z

    Article  CAS  Google Scholar 

  7. Kita E, Marai H, Jasiński M, Drewa T (2008) Transit Met Chem 33:585. doi:10.1007/s11243-008-9084-9

    Article  CAS  Google Scholar 

  8. Borowiak-Resterna A, Szymanowski J, Voelkel A (1996) J Radioanal Nucl Chem Art 208:75. doi:10.1007/BF02039750

    Article  CAS  Google Scholar 

  9. Agorastos N, Borsig L, Renard A, Antoni P, Viola G, Spingler B, Kurz P, Alberto R (2007) Chem Eur J 13:3824. doi:10.1002/chem.200700031

    Article  Google Scholar 

  10. Shaver A, Hall DA, Ng JB, Lebuis A-M, Hynes RC, Posner BI (1995) Inorg Chim Acta 229:253. doi:10.1016/0020-1693(94)04252-Q

    Article  CAS  Google Scholar 

  11. Szorcsik A, Nagy L, Sletten J, Szalontai G, Kamu E, Fiore T, Pellerito L, Kalman E (2004) J Org Chem 689:1145. doi:10.1016/j.jorganchem.2003.11.040

    Article  CAS  Google Scholar 

  12. Szorcsik A, Nagy L, Deak A, Scopelliti M, Fekete ZA, Csaszar A, Pellerito C, Pellerito L (2004) J Org Chem 689:2762. doi:10.1016/j.jorganchem.2004.05.045

    Article  CAS  Google Scholar 

  13. Szorcsik A, Nagy L, Scopelliti M, Deak A, Pellerito L, Galbacs , Hered M (2006) J Org Chem 691:1622. doi:10.1016/j.jorganchem.2005.12.019

    Article  CAS  Google Scholar 

  14. Das A, Pilet G, Luneau D, El Fallah MS, Ribas J, Mitra S (2005) Inorg Chim Acta 358:4581. doi:10.1016/j.ica.2005.07.036

    Article  CAS  Google Scholar 

  15. Min D, Yoon SS, Jung D-Y, Lee CY, Kim Y, Han WS, Lee SW (2001) Inorg Chim Acta 324:293. doi:10.1016/S0020-1693(01)00621-1

    Article  CAS  Google Scholar 

  16. Zhang X-M (2005) Inorg Chim Acta 358:1865. doi:10.1016/j.ica.2004.12.038

    Article  CAS  Google Scholar 

  17. Patrick BO, Stevens CL, Storr A, Thompson RC (2005) Polyhedron 24:2242. doi:10.1016/j.poly.2005.03.085

    Article  CAS  Google Scholar 

  18. Mendoza-Diaz G, Rigotti G, Piro OE, Sileo EE (2005) Polyhedron 24:777. doi:10.1016/j.poly.2005.02.007

    Article  CAS  Google Scholar 

  19. Liang Y, Hong M, Sun D, Zhao Y, Weng J, Wang R (2002) Inorg Chem Commun 5:366. doi:10.1016/S1387-7003(02)00385-4

    Article  CAS  Google Scholar 

  20. Min D, Lee SW (2002) Inorg Chem Commun 5:978. doi:10.1016/S1387-7003(02)00630-5

    Article  CAS  Google Scholar 

  21. Huang Y-G, Zhou Y-F, Yuan D-Q, Wu B-L, Jiang F-L, Hong M-C (2007) J Mol Struct 830:85. doi:10.1016/j.molstruc.2006.07.001

    Article  CAS  Google Scholar 

  22. Sileo EE, de Araujo AS, Rigotti G, Piro OE, Castellano EE (2003) J Mol Struct 644:67. doi:10.1016/S0022-2860(02)00450-7

    Article  CAS  Google Scholar 

  23. Pan L, Frydek T, Sander MB, Huang X, Li J (2001) Inorg Chem 40:1271. doi:10.1021/ic001012o

    Article  CAS  Google Scholar 

  24. Rao L, Zhang Z, Friese JI, Ritherdon B, Clarck SB, Hess NJ, Rai D (2002) J Chem Soc Dalton Trans 267 doi:10.1039/b104154c

  25. Richens DT (2005) Chem Rev 105:1961

    Article  CAS  Google Scholar 

  26. Kita E, Szabłowicz M (2003) Transit Met Chem 28:698. doi:10.1023/A:1025469431212

    Article  CAS  Google Scholar 

  27. Szabłowicz M, Kita E (2004) Transit Met Chem 29:762. doi:10.1007/s11243-004-9115-0

    Article  Google Scholar 

Download references

Acknowledgements

(i) The authors wish to thank to Authorities of N. Copernicus University for the financial support of these studies with the Grant No. Ch-368; (ii) Hasan Marai wishes to thank to Libyan Government for financial support of his Ph.D. studies in Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kita, E., Marai, H. & Iglewski, Ł. Chromium(III) complexes with lutidinic acid: kinetic studies in HClO4 and NaOH solutions. Transition Met Chem 34, 75–84 (2009). https://doi.org/10.1007/s11243-008-9160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9160-1

Keywords

Navigation