Skip to main content
Log in

Three-Dimensional Free Convective Heat Transmission Flow of Copper–Water Nanofluid in a Glass Bead Permeable Matrix within a Right Trapezoidal Cavity in Consideration of Thermal Non-Equilibrium Conditions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This work focuses on the impacts of varying penetrability and porosity through the natural convective heat transmission flow of copper–water in a glass bead permeable matrix within a right trapezoidal cavity in consideration of thermal non-equilibrium conditions among the permeable medium, nanoparticles, and the base fluid using the Darcy–Brinkman–Forchheimer model. The model equations are simulated using the Galerkin weighted residual finite element strategy. We analyze the influences of the various model factors particularly, the critical Rayleigh number, the porosity factor, the nanoparticles volume fraction, the interface heat transmission parameters, and the bead diameter in the realms of flow and heat. Furthermore, we investigate the effects of the aspect ratios of the trapezoidal cavity and various thermal boundary situations on the rate of heat transmission for base fluid, nanoparticles, and porous matrix in detail. The results show that the critical Rayleigh number for the commencement of local thermal nonequilibrium states reduced with the enhancement of the bead diameter and the porosity parameter. The average Nusselt number in the base fluid, nanoparticles, and solid matrix increased with the increase of the bead diameter for about 11.7%, 11.6%, and 1.4%, respectively, when it rises from 0.4 to 0.6. The trapezoidal cavity exhibits the greatest heat transmission rate for the base fluid, nanoparticles, and solid matrix in comparison with the cube and the rectangular cavity.

Article Highlights

  • Glass bead diameter and porosity parameter control the state of thermal nonequilibrium.

  • Heat transmission in porous medium enhanced significantly with the glass bead diameter.

  • Heat transmission in the trapezoidal cavity is highest compared to the heat transmission in the cube and rectangular cuboid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(A_{1}\) :

Aspect ratio

\(A_{2}\) :

Aspect ratio

\(A_{3}\) :

Aspect ratio

\({\text{c}}_{1}\) :

Empirical constant

\({\text{c}}_{2}\) :

Empirical constant

\({\text{C}}_{{\text{F}}}\) :

Forchheimer coefficient

\({\text{C}}_{{\text{p}}}\) :

Specific heat

\({\text{D}}a\) :

Darcy number

\(d_{{\text{p}}}\) :

Solid particles diameter

\(D_{{\text{p}}}\) :

Dimensionless solid particles diameter

\(g\) :

Acceleration due to gravity

\(h_{{{\text{fp}}}}\) :

Interface heat transmission factor amid the base fluid and nanoparticles

\(h_{{{\text{fs}}}}\) :

Interface heat transmission factor amid the base fluid and porous medium

\(H\) :

Height of the cavity

\(K\) :

Permeability

\(l\) :

Upper wall length

\(L\) :

Lower wall length

\(Ni_{{\text{p}}}\) :

Nield number of the base fluid/nanoparticle interface

\(Ni_{{\text{s}}}\) :

Nield number of the base fluid/permeable medium interface

\(N{\text{u}}\) :

Nusselt number

\(p\) :

Dimensional pressure

\({\text{P}}\) :

Dimensionless pressure

\(\Pr\) :

Prandtl number

\(q_{{\text{w}}}\) :

Heat flux

\(Ra\) :

Rayleigh number

\(Ra_{{\text{c}}}\) :

Critical Rayleigh number

\(t\) :

Dimensional time

\(T\) :

Temperature

\(T_{0}\) :

Reference temperature

\((u,v,w)\) :

Dimensional Darcy velocity components

\((U,V,W)\) :

Dimensionless Darcy velocity components

\((x,y,z)\) :

Dimensional coordinates

\((X,Y,Z)\) :

Dimensionless coordinates

\(\alpha\) :

Thermal diffusivity

\(\beta\) :

Coefficient of volume expansion

\(\delta\) :

Ratio of conductivities

\(\tau\) :

Dimensionless time

\(\rho\) :

Fluid density

\(\mu\) :

Dynamic viscosity

\(\upsilon\) :

Kinematic coefficient of viscosity

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Nanoparticle volume fraction

\(\kappa\) :

Thermal conductivity

\(\lambda\) :

Ratio of diffusivities

\(\varepsilon^{*}\) :

Porosity

\(\varepsilon_{\infty }\) :

Uniform porosity

\({\text{c}}\) :

Cold wall

\({\text{f}}\) :

Base fluid

\({\text{h}}\) :

Hot wall

\({\text{nf}}\) :

Nanofluid

\({\text{p}}\) :

Solid particle

\({\text{s}}\) :

Solid matrix

\(\rho\) :

Fluid density

References

  • Al-Weheibi, S.M., Rahman, M.M.: Convective heat transmission inside a porous trapezoidal enclosure occupied by nanofluids: local thermal nonequilibrium conditions for a porous medium. Ital. J. Eng. Sci. Tecn. Ital. 61(1), 2 (2018)

    Google Scholar 

  • Al-Weheibi, S.M., Rahman, M.M., Saghir, M.Z.: Free convective heat transmission under LTNE in nanofluids within a trapezoidal permeable crater in view of three energy equations: influences of variable permeability and porosity. Int. J. Thermofluid. Sci. Technol. 8(2), 080204 (2019)

    Google Scholar 

  • Al-Weheibi, S.M., Rahman, M.M., Saghir, M.Z.: Impacts of variable porosity and variable permeability on the thermal augmentation of Cu-H2O nanofluid drenched porous trapezoidal enclosure considering thermal nonequilibrium model. Arab. J. Sci. Eng. 45(2), 1237–1251 (2020)

    Article  Google Scholar 

  • Basak, T., Roy, S., Singh, A., Pandey, B.: Natural convection flow simulation for various angles in a trapezoidal enclosure with linearly heated side wall(s). Int. J. Heat. Mass. Transf. 52, 4413–4425 (2009a)

    Article  Google Scholar 

  • Basak, T., Roy, S., Singh, A., Pop, I.: Finite element simulation of natural convection flow in a trapezoidal enclosure filled with porous medium due to uniform and non-uniform heating. Int. J. Heat. Mass. Transf. 52, 70–78 (2009b)

    Article  Google Scholar 

  • Baytas, A.C., Pop, I.: Free convection in oblique enclosures filled with a porous medium. Int. J. Heat. Mass. Transf. 42, 1047–1057 (1999)

    Article  Google Scholar 

  • Baytas, A.C., Pop, I.: Natural convection in a trapezoidal enclosure filled with a porous medium. Int. J. Eng. Sci. 39, 125–134 (2001)

    Article  Google Scholar 

  • Boussaid, M., Djerrada, A., Bouhadef, M.: Thermosolutal transfer within trapezoidal cavity. Numer. Heat Transf. Part. a. 43, 431–448 (2003)

    Article  Google Scholar 

  • Buongiorno, J.: Convective transport in nanofluids. J. Heat. Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  • Chamkha, A.J., Selimefendigil, F., Oztop, H.F.: Effects of a rotating cone on the mixed convection in a double lid-driven 3D porous trapezoidal nanofluid filled cavity under the impact of magnetic field. Nanomaterials 10(3), 449 (2020)

    Article  Google Scholar 

  • Chandrasekhara, B.C., Vortmeyer, D.: Flow model for velocity distribution in fixed porous beds under isothermal conditions. Wärme-Und. Stoffübertragung. 12(2), 105–111 (1979)

    Article  Google Scholar 

  • Choi, S.U., Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows. ASME, New York (1995)

    Google Scholar 

  • Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Method. Appl. Mech. Eng. 156(1–4), 185–210 (1998)

    Article  Google Scholar 

  • Ergun, S.: Fluid Flow through Packed Columns. Chem. Eng. Sci. 48(2), 89–94 (1952)

    Google Scholar 

  • Ghasemi, K., Siavashi, M.: Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside a lid-driven enclosure using MRT-LBM. Int. J. Mech. Sci. 165, 105199 (2020)

    Article  Google Scholar 

  • Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat. Mass. Transf. 33(8), 1587–1597 (1990)

    Article  Google Scholar 

  • Hussain, S., Hussein, A.: Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations. Int. Commun. Heat. Mass. Transf. 37(8), 1115–1126 (2010)

    Article  Google Scholar 

  • Hussein, A.: Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations. Int. Commun. Heat. Mass. Transf. 46, 126–133 (2013)

    Article  Google Scholar 

  • Hussein, A.K., Lioua, K., Chand, R., Sivasankaran, S., Nikbakhti, R., Li, D., Habib, B.A.: Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with an isothermal bottom wall. Alex. Eng. J. 55(2), 741–755 (2016)

    Article  Google Scholar 

  • Kareem, A.K., Gao, S.: A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder. Int. Commun. Heat. Mass. Transf. 90, 44–55 (2018)

    Article  Google Scholar 

  • Kargarsharifabad, H.: Experimental and numerical study of natural convection of Cu-water nanofluid in a cubic enclosure under constant and alternating magnetic fields. Int. Commun. Heat. Mass. Transf. 119, 104957 (2020)

    Article  Google Scholar 

  • Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat. Mass. Transf. 107, 778–791 (2017)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat. Mass. Transf. 46(19), 3639–3653 (2003)

    Article  Google Scholar 

  • Kumar, S.: Natural convective heat transfer in trapezoidal enclosure of box type solar cooker. Renew. Energy. 29, 211–222 (2004)

    Article  Google Scholar 

  • Kumar, B.V.R., Kumar, B.: Parallel computation of natural convection in trapezoidal porous enclosures. Math. Comput. Simul. 65, 221–229 (2004)

    Article  Google Scholar 

  • Lasfer, K., Bouzaiane, M., Lili, T.: Numerical study of laminar natural convection in a side-heated trapezoidal cavity at various inclined heated sidewalls. Heat. Transf. Eng. 31(5), 362–373 (2010)

    Article  Google Scholar 

  • Malekshah, E.H., Salari, M.: Experimental and numerical investigation of natural convection in a rectangular cuboid filled by two immiscible fluids. Exp. Therm. Fluid. Sci. 85, 388–398 (2017)

    Article  Google Scholar 

  • Nield, D.A.: Effects of local thermal non-equilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous. Media. 1, 181–186 (1998)

    Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 5th edn., p. 2017. Springer, New York (2017)

    Book  Google Scholar 

  • Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development. Int. J. Heat. Mass. Transf. 38(14), 2635–2646 (1995)

    Article  Google Scholar 

  • Papanicolaou, E., Belessiotis, V.: Double-diffusive natural convection in an asymmetric trapezoidal enclosure: unsteady behavior in the laminar and the turbulent-flow regime. Int. J. Heat. Mass. Transf. 48, 191–209 (2005)

    Article  Google Scholar 

  • Rahimi, A., Kasaeipoor, A., Amiri, A., Doranehgard, M.H., Malekshah, E.H., Kolsi, L.: Lattice Boltzmann method based on Dual-MRT model for three-dimensional natural convection and entropy generation in CuO–water nanofluid filled cuboid enclosure included with discrete active walls. Comput. Math. Appl. 75(5), 1795–1813 (2018)

    Article  Google Scholar 

  • Rahman, M.M., Pop, I., Saghir, M.Z.: Steady free convection flow within a titled nanofluid saturated porous cavity in the presence of a sloping magnetic field energized by an exothermic chemical reaction administered by Arrhenius kinetics. Int. J. Heat. Mass. Transf. 129, 198–211 (2019)

    Article  Google Scholar 

  • Rahman, M.M., Saghir, Z., Pop, I.: Free convective heat transfer efficiency in Al2O3–Cu/water hybrid nanofluid inside a rectotrapezoidal enclosure. Int. J. Numer. Meth. Heat. Fluid. Flow. 32(1), 196–218 (2022)

    Article  Google Scholar 

  • Saghir, M.Z., Rahman, M.M.: Forced convection of Al2O3, Fe3O4, ND-Fe3O4, and (MWCNT-Fe3O4) mixtures in rectangular channels: experimental and numerical results. Int. J. Energy. Res. 46(8), 10002–10019 (2022a)

    Article  Google Scholar 

  • Saghir, M.Z., Rahman, M.M.: Forced convection of Al2O3–Cu, TiO2–SiO2, FWCNT–Fe3O4, and ND–Fe3O4 hybrid nanofluid in porous media. Energies 13(11), 2902 (2022b)

    Article  Google Scholar 

  • Selimefendigil, F., Oztop, H.F.: Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int. J. Heat. Mass. Transf. 117, 331–343 (2018)

    Article  Google Scholar 

  • Sheremet, M.A., Pop, I., Rahman, M.M.: Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model. Int. J. Heat. Mass. Transf. 82, 396–405 (2015a)

    Article  Google Scholar 

  • Sheremet, M.A., Pop, I., Nazar, R.: Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312–321 (2015b)

    Article  Google Scholar 

  • Subramanian, K.R.V., Rao, T.N., Balakrishnan, A.: Nanofluids and Their Engineering Applications. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  • Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat. Mass. Transf. 50(9), 2002–2018 (2007)

    Article  Google Scholar 

  • Uddin, M.J., Rahman, M.M.: Finite element computational procedure for convective flow of nanofluids in an annulus. Therm. Sci. Eng. Prog. 6, 251–267 (2018)

    Article  Google Scholar 

  • Uddin, M.J., Rahman, M.M.: Heat transportation in copper oxide-water nanofluid filled triangular cavities. Int. J. Heat. Technol. 38(1), 106–124 (2020)

    Article  Google Scholar 

  • Uddin, M., Kalbani, K.S.A., Rahman, M.M., Alam, M.S., Al-Salti, N., Eltayeb, I.: Fundamentals of nanofluids: evolution, applications and new theory. Int. J. Biomath. Syst. Biol. 2(1), 1–32 (2016)

    Google Scholar 

  • Uddin M. J., (2018). Flow dynamics of nanofluids inside a circular enclosure. PhD thesis, College of Science, Sultan Qaboos University, Oman.

  • Vadasz, P.: Explicit conditions for local thermal equilibrium in porous media heat conduction. Transp. Porous. Media. 59(3), 341–355 (2005a)

    Article  Google Scholar 

  • Vadasz, P.: Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to imposed heat flux and temperature. Int. J. Heat. Mass. Transf. 48(14), 2822–2828 (2005b)

    Article  Google Scholar 

  • Wong, K.V., De Leon, O.: Applications of nanofluids: current and future. Adv. Mech. Eng. 2, 519659 (2010)

    Article  Google Scholar 

  • Zhu, Q.Y., Zhuang, Y.J., Yu, H.Z.: Three-dimensional numerical investigation on thermosolutal convection of power-law fluids in anisotropic porous media. Int. J. Heat. Mass. Transf. 104, 897–917 (2017)

    Article  Google Scholar 

  • Zhuang, Y.J., Yu, H.Z., Zhu, Q.Y.: A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat. Mass. Transf. 115, 670–694 (2017)

    Article  Google Scholar 

  • Zienkiewicz, O. C., & Taylor, R. L. (2000). Finite Element Method: Vol 3: Fluid Dynamics. Elsevier Science & Technology Books

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable comments for the further improvement of the paper. M.M. Rahman is thankful to the Ministry of Higher Education, Research and Innovation (Oman), for funding through the research grant RC/RG-SCI/MATH/20/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rahman.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Weheibi, S.M., Rahman, M.M., Saghir, M.Z. et al. Three-Dimensional Free Convective Heat Transmission Flow of Copper–Water Nanofluid in a Glass Bead Permeable Matrix within a Right Trapezoidal Cavity in Consideration of Thermal Non-Equilibrium Conditions. Transp Porous Med 145, 653–681 (2022). https://doi.org/10.1007/s11242-022-01867-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01867-4

Keywords

Navigation