Skip to main content
Log in

A Three-Dimensional Model of Two-Phase Flows in a Porous Medium Accounting for Motion of the Liquid–Liquid Interface

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A new three-dimensional hydrodynamic model for unsteady two-phase flows in a porous medium, accounting for the motion of the interface between the flowing liquids, is developed. In a minimum number of interpretable geometrical assumptions, a complete system of macroscale flow equations is derived by averaging the microscale equations for viscous flow. The macroscale flow velocities of the phases may be non-parallel, while the interface between them is, on average, inclined to the directions of the phase velocities, as well as to the direction of the saturation gradient. The last gradient plays a specific role in the determination of the flow geometry. The resulting system of flow equations is a far generalization of the classical Buckley–Leverett model, explicitly describing the motion of the interface and velocity of the liquid close to it. Apart from propagation of the two liquid volumes, their expansion or contraction is also described, while rotation has been proven negligible. A detailed comparison with the previous studies for the two-phase flows accounting for propagation of the interface on micro- and macroscale has been carried out. A numerical algorithm has been developed allowing for solution of the system of flow equations in multiple dimensions. Sample computations demonstrate that the new model results in sharpening the displacement front and a more piston-like character of displacement. It is also demonstrated that the velocities of the flowing phases may indeed be non-collinear, especially at the zone of intersection of the displacement front and a zone of sharp permeability variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Surface

B :

Contour (boundary of a surface)

a :

Specific liquid–liquid interface

C :

Average velocity of the separating surface

c :

Local velocity of the separating surface

\( {\mathbf{D}},D \) :

Auxiliary vector in the generalized Darcy laws (or its component)

\( {\mathbf{E}} \) :

Vector of a basis of the curvilinear system of coordinates on the microscale, associated with the interface

F :

Fractional flow

Fr:

Friction function

G :

Force

H, h :

Coefficients for numerical solution

k :

Relative permeability

K :

Absolute permeability

L, l :

Coefficients for numerical solution

m :

Arbitrary microscale property

M :

Macroscale average of property m

P :

Pressure

\( {\mathbf{n}},n \) :

Vector of normal direction (or its component)

q :

Mass source or sink (in the macroscale mass balance equations)

R :

Representative elementary volume (r.e.v.)

s :

Saturation (volume fraction) of the w-phase

t :

Time

T :

Characteristic timescale

\( {\mathbf{U}},U \) :

Volume average flow rate of a phase on the macroscale (or its component)

\( {\mathbf{u}},u \) :

Microscale phase velocity (or its component)

V :

Volume

\( {\mathbf{W}},W \) :

Vector of average phase flow rate near the interface (or its component)

w :

Local phase velocity near the separating surface

Y :

Local coordinate near the interface, in direction of expansion/contraction of the w-phase

Z :

Local coordinate near the interface, in direction of its rotation

x :

Cartesian (fixed) coordinate directed along the saturation gradient

y, z :

Cartesian (fixed) coordinates in the space orthogonal to x

\( \gamma \) :

Auxiliary parameter

ϕ :

Porosity

λ :

Characteristic distance

μ :

Viscosity

τ :

Characteristic relaxation time

A :

Interface (in the definitions of the unit normal vectors)

c:

Capillary

d:

Driving force

D:

Direction of the saturation gradient

e:

Effective

eq:

Equilibrium

o :

o-Phase

S:

Stationary

s:

Solid

W :

Surface phase

w :

w-Phase

wo :

Interface between w- and o-phase

x, y, z, Y, Z :

Components of a vector along the corresponding coordinate

δ :

Infinitesimal element

References

  • Amaziane, B., Milisic, J.P., Panfilov, M., Pankratov, L.: Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media. Phys. Rev. E 85, 016304 (2012)

    Article  Google Scholar 

  • Andrew, M., Menke, H., Blunt, M.J., Bijeljic, B.: The imaging of dynamic multiphase fluid flow using synchrotron-based X-ray microtomography at reservoir conditions. Transp. Porous Media 110, 1–24 (2015)

    Article  Google Scholar 

  • Armstrong, R.T., Porter, M.L., Wildenschild, D.: Linking pore-scale interfacial curvature to column-scale capillary pressure. Adv. Water Resour. 46, 55–62 (2012)

    Article  Google Scholar 

  • Armstrong, R.T., Berg, S., Dinariev, O., Evseev, N., Klemin, D., Koroteev, D., Safonov, S.: Modeling of pore-scale two-phase phenomena using density functional hydrodynamics. Transp. Porous Media 112, 577–607 (2016)

    Article  Google Scholar 

  • Avraam, D.G., Payatakes, A.C.: Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207–236 (1995)

    Article  Google Scholar 

  • Ayub, M., Bentsen, R.G.: Interfacial viscous coupling: a myth or reality? J. Pet. Sci. Eng. 23, 13–26 (1999)

    Article  Google Scholar 

  • Ayub, M., Bentsen, R.G.: Experimental testing of interfacial coupling of two-phase flow in porous media. Pet. Sci. Technol. 23, 863–897 (2005)

    Article  Google Scholar 

  • Baker, P.E.: Discussion of “Effect of viscosity ratio on relative permeability”. Paper SPE 1496-G (1960)

  • Barenblatt, G.I., Patzek, T.W., Silin, D.B.: The mathematical model of non-equilibrium effects in water oil displacement. SPE J. 8, 409–416 (2003)

    Article  Google Scholar 

  • Baveye, P.: The operational significance of the continuum hypothesis in the theory of water movement through soil and aquifers. Water Resour. Res. 20, 521–530 (1984)

    Article  Google Scholar 

  • Bedrikovetsky, P.G.: Mathematical Theory of Oil and Gas Recovery. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

  • Bedrikovetsky, P.G.: New model for two-phase multicomponent displacements honoring ganglia and droplets. Am. Soc. Mech. Eng. Heat Transf. Div. 364(2), 141–158 (1999)

    Google Scholar 

  • Bedrikovetsky, P.G.: WAG displacements of oil-condensates accounting for hydrocarbon ganglia. Transp. Porous Media 52, 229–266 (2003)

    Article  Google Scholar 

  • Bedrikovetsky, P.G., Marchesin, D., Ballin, P.R.: Hysteresis in flow in porous media with phase transitions. Am. Soc. Mech. Eng. Heat Transf. Div. 364(2), 159–171 (1999)

    Google Scholar 

  • Bedrikovetsky, P.G., Siqueira, F.D., Furtado, C., de Souza, A.L.S.: Modified particle detachment model for colloidal transport in porous media. Transp. Porous Media 86, 353–383 (2011)

    Article  Google Scholar 

  • Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. (PNAS) 110(10), 3755–3759 (2013)

    Article  Google Scholar 

  • Berg, S., Rücker, M., Ott, H., Georgiadis, A., van der Linde, H., Enzmann, F., Kersten, M., Armstrong, R.T., de With, S., Becker, J., Wiegmann, A.: Connected pathway relative permeability from pore-scale imaging of imbibition. Adv. Water Resour. 90, 24–35 (2016)

    Article  Google Scholar 

  • Bethel, F.T., Calhoun, J.C.: Capillary desaturation in unconsolidated beads. J. Pet. Technol. 5(8), 197–202 (1953)

    Article  Google Scholar 

  • Bourblaux, B.J., Kalaydjian, F.J.: Experimental study of cocurrent and countercurrent flows in natural porous media. Paper SPE 18283, SPE Reservoir Engineering, pp. 361–368 (1990)

  • Bradford, S.A., Feike, J.L.: Estimating interfacial areas for multi-fluid soil systems. J. Contam. Hydrol. 27, 83–105 (1997)

    Article  Google Scholar 

  • Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1, 27–34 (1949). https://doi.org/10.1007/BF02120313

    Article  Google Scholar 

  • Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrology papers 3, Colorado State U., Fort Collins, Colorado (1964)

  • Chen, D., Pyrak-Nolte, L.J., Griffin, J., Giordano, N.J.: Measurement of interfacial area per volume for drainage and imbibition. Water Resour. Res. 43, W12504 (2007). https://doi.org/10.1029/2007WR006021

    Google Scholar 

  • Cheng, J.-T., Pyrak-Nolte, L.J., Nolte, D.D., Giordano, N.J.: Linking pressure and saturation through interfacial areas in porous media. Geophys. Res. Lett. 31, L08502 (2004). https://doi.org/10.1029/2003GL019282

    Google Scholar 

  • Class, H., Helmig, R., Niessner, J., Öllman, U.: Multiphase processes in porous media. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds.) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol. 28, pp. 45–82. Springer, Berlin (2006)

    Google Scholar 

  • Coats, K.H.: Reservoir simulation. In: Bradley, H.B. (ed.) Petroleum Engineering Handbook, Chap. 48. SPE, Richardson (1987)

    Google Scholar 

  • Culligan, K.A., Wildenschild, D., Christensen, B.S.B., Gray, W.G., Rivers, M.L., Tompson, A.F.B.: Interfacial area measurements for unsaturated flow through a porous medium. Water Resour. Res. 40, W12413 (2004). https://doi.org/10.1029/2004WR003278

    Article  Google Scholar 

  • Culligan, K.A., Wildenschild, D., Christensen, B.S.B., Gray, W.G., Rivers, M.L.: Pore-scale characteristics of multiphase flow in porous media: a comparison of air–water and oil–water experiments. Adv. Water Resour. 29, 227–238 (2006)

    Article  Google Scholar 

  • Cushman, J.H.: On unifying the concept of scale, instrumentation and stochastics in the development of multiphase transport theory. Water Resour. Res. 20, 1668–1676 (1984)

    Article  Google Scholar 

  • Das, D.B., Gauldie, R., Mirzaei, M.: Dynamic effects for two-phase flow in porous media: fluid property effects. AIChE J. 53(10), 2505–2520 (2007)

    Article  Google Scholar 

  • De la Cruz, V., Spanos, T.J.T.: Mobilization of oil ganglia. AIChE J. 29(5), 854–858 (1983)

    Article  Google Scholar 

  • Dinariev, OYu., Mikhailov, D.N.: Modeling of capllary pressure hysteresis and of hysteresis of relative permeabilities in porous materials on the basis of the pore ensemble concept. J. Eng. Phys. Thermophys. 81(6), 1128–1135 (2008)

    Article  Google Scholar 

  • Downie, J., Crane, F.E.: Effect of viscosity on relative permeability, paper SPE 1629. SPE J. 1(2), 59–60 (1961)

    Article  Google Scholar 

  • Dullien, F.A.L., Dong, M.: Experimental determination of the flow transport coefficients in the coupled equations of two-phase flow in porous media. Transp. Porous Media 25, 97–120 (1996)

    Article  Google Scholar 

  • Eleri, O.O., Graue, A., Skauge, A.: Steady-state and unsteady-state two-phase relative permeability hysteresis and measurements of three-phase relative permeabilities using imaging techniques. Paper SPE 30764 presented at the SPE Annual Technical Conference and Exhibition held in Dallas, USA, 22–25 Oct 1995

  • Eastwood, J.E., Spanos, T.J.T.: Steady-state countercurrent flow in one dimension. Transp. Porous Media 6, 173–182 (1991)

    Article  Google Scholar 

  • Ferrari, A., Lunati, I.: Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Adv. Water Resour. 57, 19–31 (2013)

    Article  Google Scholar 

  • Ferrari, A., Lunati, I.: Inertial effects during irreversible meniscus reconfiguration in angular pores. Adv. Water Resour. 74, 1–13 (2014)

    Article  Google Scholar 

  • Fogden, A., Kumar, M., Morrow, N.R., Buckley, J.S.: Mobilization of fine particles during flooding of sandstones and possible relations to enhanced oil recovery. Energy Fuels 25, 1605–1616 (2011)

    Article  Google Scholar 

  • Ginzburg, I.: Variably saturated flow described by anisotropic Lattice Boltzmann methods. Comput. Fluids 35, 831–848 (2006)

    Article  Google Scholar 

  • Gray, W.G., Miller, C.T.: Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Springer, Cham (2014)

    Book  Google Scholar 

  • Gray, W.G., Dye, A.L., McClure, J.E., Pyrak-Nolte, L.J., Miller, C.T.: On the dynamics and kinematics of two-phase-fluid flow in porous media. Water Resour. Res. 51, 5365–5381 (2015). https://doi.org/10.1002/2015wr016921

    Article  Google Scholar 

  • Green, D.W., Willhite, G.P.: Enhanced Oil Recovery. SPE Textbook Series, vol. 6. SPE, Richardson (1998)

    Google Scholar 

  • Grinfeld, P.: Hamiltonian dynamic equations for fluid films. Stud. Appl. Math. 125, 223–264 (2010)

    Google Scholar 

  • Grinfeld, P.: Introduction to Tensor Analysis and the Calculus of Moving Surfaces. Springer, New York (2013)

    Book  Google Scholar 

  • Halim, A.: Application of microorganisms for enhanced oil recovery. Ph.D. thesis, Technical University of Denmark, Kgs. Lyngby, Denmark (2015)

  • Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Celia, M.A., Dahle, H.K.: Dynamic effect in the capillary pressure–saturation relationship and its impact on unsaturated flow. Vadose Zone J. 1, 38–57 (2002)

    Article  Google Scholar 

  • Herring, A.L., Andersson, L., Schülter, S., Sheppard, A., Wildenschild, D.: Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media. Adv. Water Resour. 79, 91–102 (2015)

    Article  Google Scholar 

  • Hilfer, R.: Macroscopic capillarity and hysteresis for flow in porous media. Phys. Rev. E 73, 016307 (2006)

    Article  Google Scholar 

  • Hilfer, R., Doster, F.: Percolation as a basic concept for macroscopic capillarity. Transp. Porous Media 82, 507–519 (2010)

    Article  Google Scholar 

  • Huang, H., Lu, X.: Relative permeabilities and coupling effects in steady-state gas–liquid flow in porous media: a lattice Boltzmann study. Phys. Fluids 21, 092104 (2009). https://doi.org/10.1063/1.3225144

    Article  Google Scholar 

  • Jettestuen, E., Helland, J.O., Prodanovic, M.: A level-set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49, 4645–4661 (2013)

    Article  Google Scholar 

  • Joekar-Niasar, V., Hassanizadeh, S.M.: Specific interfacial area: the missing state variable in two-phase flow equations? Water Resour. Res. 47, W05513 (2011). https://doi.org/10.1029/2010WR009291

    Article  Google Scholar 

  • Kadet, V.V., Galechyan, A.M.: Percolation modeling of relative permeability hysteresis. J. Pet. Sci. Eng. 119, 139–148 (2014)

    Article  Google Scholar 

  • Kalaydjian, F.: A macroscopic description of multiphase flow in porous media involving spacetime evolution of fluid–fluid interface. Transp. Porous Media 2, 537–552 (1987)

    Article  Google Scholar 

  • Kalaydjian, F.: Origin and quantification of coupling between relative permeabilities for two-phase flow in porous media. Transp. Porous Media 5, 215–229 (1990)

    Article  Google Scholar 

  • Kalaydjian, F., Bourbiaux, B., Cuerillot, D.: Viscous coupling between fluid phase for two-phase flow in porous media: theory versus experiment. In: Proceedings of the Fifth European Symposium on Improved Oil Recovery, Budapest, pp. 717–726 (1989)

  • Karadimitrou, N.K., Hassanizadeh, S.M., Joekar-Niasar, V., Kleingeld, P.J.: Micromodel study of the two-phase flow under transient conditions: quantifying effects of specific interfacial area. Water Resour. Res. 50, 8125–8140 (2015). https://doi.org/10.1002/2014wr015388

    Article  Google Scholar 

  • Krasnoselskii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin (1989)

    Book  Google Scholar 

  • Lazouskaya, V., Wang, L.-P., Or, D., Wang, G., Caplan, J.L., Jin, Y.: Colloid mobilization by fluid displacement fronts in channels. J. Colloid Interface Sci. 406, 44–50 (2013)

    Article  Google Scholar 

  • Marle, C.M.: On macroscopic equations governing multiphase flow with diffusion and reactions in porous media. Int. J. Eng. Sci. 20, 643–662 (1982)

    Article  Google Scholar 

  • McDonald, K., Carroll, K.C., Brusseau, M.L.: Comparison of fluid–fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples. Water Resour. Res. 52(7), 5393–5399 (2016)

    Article  Google Scholar 

  • McClure, J.E., Berrill, M.A., Gray, W.G., Miller, C.T.: Tracking interface and common curve dynamics for two-fluid flow in porous media. J. Fluid Mech. 796, 211–232 (2016)

    Article  Google Scholar 

  • Moebius, F., Or, D.: Inertial forces affect fluid front displacement dynamics in a pore-throat network model. Phys. Rev. E 90, 023019 (2014)

    Article  Google Scholar 

  • Morrow, N.R.: Physics and thermodynamics of capillary action in porous media. Ind. Eng. Chem. 62(6), 32–56 (1970)

    Article  Google Scholar 

  • Morrow, N.R., Cram, P.J., McCaffery, F.G.: Displacement studies in dolomite with wettability control by octanoic acid. SPE J. 13(4), 221–232 (1973)

    Article  Google Scholar 

  • Niessner, J., Hassanizadeh, S.M.: Modeling kinetic interphase mass transfer for two-phase flow in porous media including fluid–fluid interfacial area. Transp. Porous Media 80, 329–344 (2009a)

    Article  Google Scholar 

  • Niessner, J., Hassanizadeh, S.M.: Non-equilibrium interphase heat and mass transfer during two-phase flow in porous media—theoretical considerations and modeling. Adv. Water Resour. 32, 1756–1766 (2009b)

    Article  Google Scholar 

  • Niessner, J., Berg, S., Hassanizadeh, M.S.: Comparison of two-phase Darcy’s law with a thermodynamically consistent approach. Transp. Porous Media 88, 133–148 (2011)

    Article  Google Scholar 

  • Panfilov, M., Panfilova, I.: Phenomenological meniscus model for two-phase flows in porous media. Transp. Porous Media 58, 87–119 (2005)

    Article  Google Scholar 

  • Peaceman, D.W.: Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. SPE J. 23(3), 531–543 (1983)

    Article  Google Scholar 

  • Porter, M.L., Schaap, M.G., Wildenschild, D.: Lattice–Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media. Adv. Water Resour. 32, 1632–1640 (2009)

    Article  Google Scholar 

  • Pyrak-Nolte, L.J., Nolte, D.D., Cheng, J.-T., Giordano, N.J.: Relating capillary pressure to interfacial areas. Water Resour. Res. 44, W04608 (2008). https://doi.org/10.1029/2007WR006434

    Article  Google Scholar 

  • Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231, 5653–5668 (2012)

    Article  Google Scholar 

  • Ramstad, T., Øren, P.-E., Bakke, S.: Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method, SPE 124617. SPE J. 15(4), 917–927 (2010)

    Article  Google Scholar 

  • Reeves, P.C., Celia, M.A.: A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resour. Res. 32(8), 2345–2358 (1996)

    Article  Google Scholar 

  • Reynolds, C.A., Menke, H., Andrew, M., Blunt, M.J., Krevor, S.: Dynamic fluid connectivity during steady-state multiphase flow in a sandstone. Proc. Natl. Acad. Sci. 114(31), 8187–8192 (2017)

    Article  Google Scholar 

  • Rose, W.: Attaching new meanings to the equations of Buckley and Leverett. J. Pet. Sci. Eng. 1, 223–228 (1988)

    Article  Google Scholar 

  • Rose, W.: Coupling coefficients for two-phase flow in pore spaces of simple geometry. Transp. Porous Media 5, 97–102 (1990)

    Article  Google Scholar 

  • Rose, W.: Critical questions about the coupling hypothesis. J. Pet. Sci. Eng. 5, 299–307 (1991)

    Article  Google Scholar 

  • Saripalli, K.P.: Use of interfacial tracers for characterization of nonaqueous phase liquid (NAPL). Ph.D., dissertation, University of Florida (1996)

  • Saripalli, K.P., Kim, H., Suresh, P., Rao, C., Annable, M.D.: Measurement of specific fluid-fluid interfacial areas of immiscible fluids in porous media. Environ. Sci. Technol. 31(3), 932–936 (1997)

    Article  Google Scholar 

  • Schülter, S., Berg, S., Li, T., Vogel, H.-J., Wildenschild, D.: Time scales of relaxation dynamics during transient conditions. Water Resour. Res. 53, 4709–4724 (2017)

    Article  Google Scholar 

  • Seth, S., Morrow, N.R.: Efficiency of conversion of work of drainage to surface energy for sandstone and carbonate. SPE Reserv. Eval. Eng. 10(4), 338–347 (2007)

    Article  Google Scholar 

  • ShamsiJazeyi, H., Miller, C.A., Wong, M.S., Tour, J.M., Verduzco, R.: Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 131(15), 40576 (2014)

    Article  Google Scholar 

  • Singh, K., Bijeljic, J., Blunt, M.J.: Imaging of oil layers, curvature and contact angle in a mixed wet and a water-wet carbonate rock. Water Resour. Res. 52, 1716–1728 (2016)

    Article  Google Scholar 

  • Singh, K., Menke, H., Andrew, M., Lin, Q., Rau, C., Blunt, M.J., Bijeljic, B.: Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Sci. Rep. 7, 5192 (2017). https://doi.org/10.1038/s41598-017-05204-4

    Article  Google Scholar 

  • Shapiro, A.A.: Two-phase immiscible flows in porous media: the mesoscopic Maxwell–Stefan approach. Transp. Porous Media 107, 335–363 (2015)

    Article  Google Scholar 

  • Shapiro, A.A.: Mechanics of a separating surface for a two-phase co-current flow in a porous medium. Transp. Porous Media 112, 489–517 (2016)

    Article  Google Scholar 

  • Shapiro, A.A., Stenby, E.H.: On the nonequilibrium segregation state of a two-phase mixture in a porous column. Transp. Porous Media 23, 83–106 (1996)

    Article  Google Scholar 

  • Shvidler, M.I.: Two-phase flow equations in porous media providing for the phase interaction. Izvestiia Akademii Nauk SSSR, Mekhanika, Mashinostroenie 1, 131–134 (1961)

    Google Scholar 

  • Tang, G.Q., Morrow, N.R.: Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. J. Pet. Sci. Eng. 24(2–4), 99–111 (1999)

    Article  Google Scholar 

  • Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Dover Publications, New York (1963)

    Google Scholar 

  • Valdes-Parada, F., Alberto Ohoa-Thapia, J., Alvarez-Ramirez, J.: On the effective viscosity for the Darcy–Brinkman equation. Physics A 385, 69–79 (2007)

    Article  Google Scholar 

  • Vogel, H.-J., Tölke, J., Schultz, V.P., Krafczyk, M., Roth, K.: Comparison of a lattice-Boltzmann model a full morphology model, and a pore network model for determining capillary pressure–saturation relationships. Vadose Zone J. 4, 380–388 (2005)

    Article  Google Scholar 

  • Wesselingh, J.A., Krishna, R.: Mass Transfer in Multicomponent Mixtures. VSSD, Delft (2000)

    Google Scholar 

  • Whitaker, S.: Flow in porous media 1: a theoretical derivation of Darcy’s Law. Transp. Porous Media 1, 3–25 (1986a)

    Article  Google Scholar 

  • Whitaker, S.: Flow in porous media 2: the governing equations for immiscible, two-phase flow. Transp. Porous Media 1, 105–125 (1986b)

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Yuster, S.T.: Theoretical consideration of multiphase flows in idealized capillary systems. Proc. Third World Pet. Congr. 2, 437–445 (1951)

    Google Scholar 

Download references

Acknowledgements

This work was initiated several years ago in the framework of the ADORE project, supervised by Professor Erling H. Stenby (DTU). Hadise Baghooee has performed a number of useful checks and computations in the framework of her Master thesis work. Professor Pavel G. Bedrikovetsky (University of Adelaide, Australia) and Dr. Sidsel Marie Nielsen (Technical University of Denmark) are kindly acknowledged for a number of useful discussions. Dr. Hanne Pernille Andersen is kindly acknowledged for professional language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Shapiro.

Appendix

Appendix

The goal of this appendix is to demonstrate that the rotation of the w- and o-regions is negligible on the macroscopic scale and, thus, to eliminate rotation from the macroscopic picture of the motion.

1.1 Statement

Rotation of the w- and o-regions may, on average, be disregarded. The value of the corresponding velocity \( W_{Z} \) is equal to zero outside the regions of negligible volume.

In order to demonstrate the validity of this statement, we apply the curl operator to the Brinkman Eq. (13) for the w-phase. The gradient of pressure cancels out:

$$ - \frac{{\mu_{{w}} }}{K}\nabla \times {\mathbf{u}}_{{w}} + \mu_{\text{e},w} \Delta (\nabla \times {\mathbf{u}}_{{w}} ) = 0 $$
(A1)

That is, the curl \( \nabla \times {\mathbf{u}}_{{w}} \) obeys the Helmholtz equation with a negative coefficient. Its solution is zero, provided that the boundary conditions do not contain vortices, which is true for most of the typical problem statements. In rare cases where \( \nabla \times {\mathbf{u}}_{{w}} \) is nonzero on the boundary of a region of interest, the solution of Eq. (A1) is damped exponentially with the distance from the boundary, and the characteristic damping distances are of the order of \( \sqrt K \) (Tikhonov and Samarskii 1963). For typical values of permeabilities, these distances are comparable to the pore sizes, and much smaller than the size of a region of interest. Hence, for the most part of the region it may be asserted that

$$ \nabla \times {\mathbf{u}}_{{w}} = 0 $$
(A2)

It should also be remarked that the last equality would be valid automatically if the microscale Brinkman equation could be reduced to the Darcy law.

By the Stokes circulation theorem, it follows from Eq. (A2) that circulation of vector \( {\mathbf{u}}_{{w}} \) over contour \( B_{{wo}} \) (Fig. 1d) is equal to zero:

$$ \oint\limits_{{B_{{wo}} }} {w_{Z} {\text{d}}s} = 0 $$
(A3)

The value of \( W_{Z} \) is the average of \( w_{Z} \) over the surface \( A_{{wo}} \) and, hence, is superposition of integrals (A3). Therefore, it is also equal to zero. The statement is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, A.A. A Three-Dimensional Model of Two-Phase Flows in a Porous Medium Accounting for Motion of the Liquid–Liquid Interface. Transp Porous Med 122, 713–744 (2018). https://doi.org/10.1007/s11242-018-1023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1023-4

Keywords

Navigation