Transport in Porous Media

, Volume 122, Issue 3, pp 713–744

# A Three-Dimensional Model of Two-Phase Flows in a Porous Medium Accounting for Motion of the Liquid–Liquid Interface

Article

## Abstract

A new three-dimensional hydrodynamic model for unsteady two-phase flows in a porous medium, accounting for the motion of the interface between the flowing liquids, is developed. In a minimum number of interpretable geometrical assumptions, a complete system of macroscale flow equations is derived by averaging the microscale equations for viscous flow. The macroscale flow velocities of the phases may be non-parallel, while the interface between them is, on average, inclined to the directions of the phase velocities, as well as to the direction of the saturation gradient. The last gradient plays a specific role in the determination of the flow geometry. The resulting system of flow equations is a far generalization of the classical Buckley–Leverett model, explicitly describing the motion of the interface and velocity of the liquid close to it. Apart from propagation of the two liquid volumes, their expansion or contraction is also described, while rotation has been proven negligible. A detailed comparison with the previous studies for the two-phase flows accounting for propagation of the interface on micro- and macroscale has been carried out. A numerical algorithm has been developed allowing for solution of the system of flow equations in multiple dimensions. Sample computations demonstrate that the new model results in sharpening the displacement front and a more piston-like character of displacement. It is also demonstrated that the velocities of the flowing phases may indeed be non-collinear, especially at the zone of intersection of the displacement front and a zone of sharp permeability variation.

## Keywords

3D two-phase flow Porous medium Interface Hydrodynamic modeling Numerical solution

## Latin

A

Surface

B

Contour (boundary of a surface)

a

Specific liquid–liquid interface

C

Average velocity of the separating surface

c

Local velocity of the separating surface

$${\mathbf{D}},D$$

Auxiliary vector in the generalized Darcy laws (or its component)

$${\mathbf{E}}$$

Vector of a basis of the curvilinear system of coordinates on the microscale, associated with the interface

F

Fractional flow

Fr

Friction function

G

Force

H, h

Coefficients for numerical solution

k

Relative permeability

K

Absolute permeability

L, l

Coefficients for numerical solution

m

Arbitrary microscale property

M

Macroscale average of property m

P

Pressure

$${\mathbf{n}},n$$

Vector of normal direction (or its component)

q

Mass source or sink (in the macroscale mass balance equations)

R

Representative elementary volume (r.e.v.)

s

Saturation (volume fraction) of the w-phase

t

Time

T

Characteristic timescale

$${\mathbf{U}},U$$

Volume average flow rate of a phase on the macroscale (or its component)

$${\mathbf{u}},u$$

Microscale phase velocity (or its component)

V

Volume

$${\mathbf{W}},W$$

Vector of average phase flow rate near the interface (or its component)

w

Local phase velocity near the separating surface

Y

Local coordinate near the interface, in direction of expansion/contraction of the w-phase

Z

Local coordinate near the interface, in direction of its rotation

x

Cartesian (fixed) coordinate directed along the saturation gradient

y, z

Cartesian (fixed) coordinates in the space orthogonal to x

## Greek

$$\gamma$$

Auxiliary parameter

ϕ

Porosity

λ

Characteristic distance

μ

Viscosity

τ

Characteristic relaxation time

## Subscripts

A

Interface (in the definitions of the unit normal vectors)

c

Capillary

d

Driving force

D

e

Effective

eq

Equilibrium

o

o-Phase

S

Stationary

s

Solid

W

Surface phase

w

w-Phase

wo

Interface between w- and o-phase

x, y, z, Y, Z

Components of a vector along the corresponding coordinate

δ

Infinitesimal element

## Notes

### Acknowledgements

This work was initiated several years ago in the framework of the ADORE project, supervised by Professor Erling H. Stenby (DTU). Hadise Baghooee has performed a number of useful checks and computations in the framework of her Master thesis work. Professor Pavel G. Bedrikovetsky (University of Adelaide, Australia) and Dr. Sidsel Marie Nielsen (Technical University of Denmark) are kindly acknowledged for a number of useful discussions. Dr. Hanne Pernille Andersen is kindly acknowledged for professional language editing.

## References

1. Amaziane, B., Milisic, J.P., Panfilov, M., Pankratov, L.: Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media. Phys. Rev. E 85, 016304 (2012)
2. Andrew, M., Menke, H., Blunt, M.J., Bijeljic, B.: The imaging of dynamic multiphase fluid flow using synchrotron-based X-ray microtomography at reservoir conditions. Transp. Porous Media 110, 1–24 (2015)
3. Armstrong, R.T., Porter, M.L., Wildenschild, D.: Linking pore-scale interfacial curvature to column-scale capillary pressure. Adv. Water Resour. 46, 55–62 (2012)
4. Armstrong, R.T., Berg, S., Dinariev, O., Evseev, N., Klemin, D., Koroteev, D., Safonov, S.: Modeling of pore-scale two-phase phenomena using density functional hydrodynamics. Transp. Porous Media 112, 577–607 (2016)
5. Avraam, D.G., Payatakes, A.C.: Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207–236 (1995)
6. Ayub, M., Bentsen, R.G.: Interfacial viscous coupling: a myth or reality? J. Pet. Sci. Eng. 23, 13–26 (1999)
7. Ayub, M., Bentsen, R.G.: Experimental testing of interfacial coupling of two-phase flow in porous media. Pet. Sci. Technol. 23, 863–897 (2005)
8. Baker, P.E.: Discussion of “Effect of viscosity ratio on relative permeability”. Paper SPE 1496-G (1960)Google Scholar
9. Barenblatt, G.I., Patzek, T.W., Silin, D.B.: The mathematical model of non-equilibrium effects in water oil displacement. SPE J. 8, 409–416 (2003)
10. Baveye, P.: The operational significance of the continuum hypothesis in the theory of water movement through soil and aquifers. Water Resour. Res. 20, 521–530 (1984)
11. Bedrikovetsky, P.G.: Mathematical Theory of Oil and Gas Recovery. Kluwer Academic Publishers, Dordrecht (1993)
12. Bedrikovetsky, P.G.: New model for two-phase multicomponent displacements honoring ganglia and droplets. Am. Soc. Mech. Eng. Heat Transf. Div. 364(2), 141–158 (1999)Google Scholar
13. Bedrikovetsky, P.G.: WAG displacements of oil-condensates accounting for hydrocarbon ganglia. Transp. Porous Media 52, 229–266 (2003)
14. Bedrikovetsky, P.G., Marchesin, D., Ballin, P.R.: Hysteresis in flow in porous media with phase transitions. Am. Soc. Mech. Eng. Heat Transf. Div. 364(2), 159–171 (1999)Google Scholar
15. Bedrikovetsky, P.G., Siqueira, F.D., Furtado, C., de Souza, A.L.S.: Modified particle detachment model for colloidal transport in porous media. Transp. Porous Media 86, 353–383 (2011)
16. Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. (PNAS) 110(10), 3755–3759 (2013)
17. Berg, S., Rücker, M., Ott, H., Georgiadis, A., van der Linde, H., Enzmann, F., Kersten, M., Armstrong, R.T., de With, S., Becker, J., Wiegmann, A.: Connected pathway relative permeability from pore-scale imaging of imbibition. Adv. Water Resour. 90, 24–35 (2016)
18. Bethel, F.T., Calhoun, J.C.: Capillary desaturation in unconsolidated beads. J. Pet. Technol. 5(8), 197–202 (1953)
19. Bourblaux, B.J., Kalaydjian, F.J.: Experimental study of cocurrent and countercurrent flows in natural porous media. Paper SPE 18283, SPE Reservoir Engineering, pp. 361–368 (1990)Google Scholar
20. Bradford, S.A., Feike, J.L.: Estimating interfacial areas for multi-fluid soil systems. J. Contam. Hydrol. 27, 83–105 (1997)
21. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1, 27–34 (1949).
22. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrology papers 3, Colorado State U., Fort Collins, Colorado (1964)Google Scholar
23. Chen, D., Pyrak-Nolte, L.J., Griffin, J., Giordano, N.J.: Measurement of interfacial area per volume for drainage and imbibition. Water Resour. Res. 43, W12504 (2007). Google Scholar
24. Cheng, J.-T., Pyrak-Nolte, L.J., Nolte, D.D., Giordano, N.J.: Linking pressure and saturation through interfacial areas in porous media. Geophys. Res. Lett. 31, L08502 (2004). Google Scholar
25. Class, H., Helmig, R., Niessner, J., Öllman, U.: Multiphase processes in porous media. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds.) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol. 28, pp. 45–82. Springer, Berlin (2006)Google Scholar
26. Coats, K.H.: Reservoir simulation. In: Bradley, H.B. (ed.) Petroleum Engineering Handbook, Chap. 48. SPE, Richardson (1987)Google Scholar
27. Culligan, K.A., Wildenschild, D., Christensen, B.S.B., Gray, W.G., Rivers, M.L., Tompson, A.F.B.: Interfacial area measurements for unsaturated flow through a porous medium. Water Resour. Res. 40, W12413 (2004).
28. Culligan, K.A., Wildenschild, D., Christensen, B.S.B., Gray, W.G., Rivers, M.L.: Pore-scale characteristics of multiphase flow in porous media: a comparison of air–water and oil–water experiments. Adv. Water Resour. 29, 227–238 (2006)
29. Cushman, J.H.: On unifying the concept of scale, instrumentation and stochastics in the development of multiphase transport theory. Water Resour. Res. 20, 1668–1676 (1984)
30. Das, D.B., Gauldie, R., Mirzaei, M.: Dynamic effects for two-phase flow in porous media: fluid property effects. AIChE J. 53(10), 2505–2520 (2007)
31. De la Cruz, V., Spanos, T.J.T.: Mobilization of oil ganglia. AIChE J. 29(5), 854–858 (1983)
32. Dinariev, OYu., Mikhailov, D.N.: Modeling of capllary pressure hysteresis and of hysteresis of relative permeabilities in porous materials on the basis of the pore ensemble concept. J. Eng. Phys. Thermophys. 81(6), 1128–1135 (2008)
33. Downie, J., Crane, F.E.: Effect of viscosity on relative permeability, paper SPE 1629. SPE J. 1(2), 59–60 (1961)
34. Dullien, F.A.L., Dong, M.: Experimental determination of the flow transport coefficients in the coupled equations of two-phase flow in porous media. Transp. Porous Media 25, 97–120 (1996)
35. Eleri, O.O., Graue, A., Skauge, A.: Steady-state and unsteady-state two-phase relative permeability hysteresis and measurements of three-phase relative permeabilities using imaging techniques. Paper SPE 30764 presented at the SPE Annual Technical Conference and Exhibition held in Dallas, USA, 22–25 Oct 1995Google Scholar
36. Eastwood, J.E., Spanos, T.J.T.: Steady-state countercurrent flow in one dimension. Transp. Porous Media 6, 173–182 (1991)
37. Ferrari, A., Lunati, I.: Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Adv. Water Resour. 57, 19–31 (2013)
38. Ferrari, A., Lunati, I.: Inertial effects during irreversible meniscus reconfiguration in angular pores. Adv. Water Resour. 74, 1–13 (2014)
39. Fogden, A., Kumar, M., Morrow, N.R., Buckley, J.S.: Mobilization of fine particles during flooding of sandstones and possible relations to enhanced oil recovery. Energy Fuels 25, 1605–1616 (2011)
40. Ginzburg, I.: Variably saturated flow described by anisotropic Lattice Boltzmann methods. Comput. Fluids 35, 831–848 (2006)
41. Gray, W.G., Miller, C.T.: Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Springer, Cham (2014)
42. Gray, W.G., Dye, A.L., McClure, J.E., Pyrak-Nolte, L.J., Miller, C.T.: On the dynamics and kinematics of two-phase-fluid flow in porous media. Water Resour. Res. 51, 5365–5381 (2015).
43. Green, D.W., Willhite, G.P.: Enhanced Oil Recovery. SPE Textbook Series, vol. 6. SPE, Richardson (1998)Google Scholar
44. Grinfeld, P.: Hamiltonian dynamic equations for fluid films. Stud. Appl. Math. 125, 223–264 (2010)Google Scholar
45. Grinfeld, P.: Introduction to Tensor Analysis and the Calculus of Moving Surfaces. Springer, New York (2013)
46. Halim, A.: Application of microorganisms for enhanced oil recovery. Ph.D. thesis, Technical University of Denmark, Kgs. Lyngby, Denmark (2015)Google Scholar
47. Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)
48. Hassanizadeh, S.M., Celia, M.A., Dahle, H.K.: Dynamic effect in the capillary pressure–saturation relationship and its impact on unsaturated flow. Vadose Zone J. 1, 38–57 (2002)
49. Herring, A.L., Andersson, L., Schülter, S., Sheppard, A., Wildenschild, D.: Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media. Adv. Water Resour. 79, 91–102 (2015)
50. Hilfer, R.: Macroscopic capillarity and hysteresis for flow in porous media. Phys. Rev. E 73, 016307 (2006)
51. Hilfer, R., Doster, F.: Percolation as a basic concept for macroscopic capillarity. Transp. Porous Media 82, 507–519 (2010)
52. Huang, H., Lu, X.: Relative permeabilities and coupling effects in steady-state gas–liquid flow in porous media: a lattice Boltzmann study. Phys. Fluids 21, 092104 (2009).
53. Jettestuen, E., Helland, J.O., Prodanovic, M.: A level-set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49, 4645–4661 (2013)
54. Joekar-Niasar, V., Hassanizadeh, S.M.: Specific interfacial area: the missing state variable in two-phase flow equations? Water Resour. Res. 47, W05513 (2011).
55. Kadet, V.V., Galechyan, A.M.: Percolation modeling of relative permeability hysteresis. J. Pet. Sci. Eng. 119, 139–148 (2014)
56. Kalaydjian, F.: A macroscopic description of multiphase flow in porous media involving spacetime evolution of fluid–fluid interface. Transp. Porous Media 2, 537–552 (1987)
57. Kalaydjian, F.: Origin and quantification of coupling between relative permeabilities for two-phase flow in porous media. Transp. Porous Media 5, 215–229 (1990)
58. Kalaydjian, F., Bourbiaux, B., Cuerillot, D.: Viscous coupling between fluid phase for two-phase flow in porous media: theory versus experiment. In: Proceedings of the Fifth European Symposium on Improved Oil Recovery, Budapest, pp. 717–726 (1989)Google Scholar
59. Karadimitrou, N.K., Hassanizadeh, S.M., Joekar-Niasar, V., Kleingeld, P.J.: Micromodel study of the two-phase flow under transient conditions: quantifying effects of specific interfacial area. Water Resour. Res. 50, 8125–8140 (2015).
60. Krasnoselskii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin (1989)
61. Lazouskaya, V., Wang, L.-P., Or, D., Wang, G., Caplan, J.L., Jin, Y.: Colloid mobilization by fluid displacement fronts in channels. J. Colloid Interface Sci. 406, 44–50 (2013)
62. Marle, C.M.: On macroscopic equations governing multiphase flow with diffusion and reactions in porous media. Int. J. Eng. Sci. 20, 643–662 (1982)
63. McDonald, K., Carroll, K.C., Brusseau, M.L.: Comparison of fluid–fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples. Water Resour. Res. 52(7), 5393–5399 (2016)
64. McClure, J.E., Berrill, M.A., Gray, W.G., Miller, C.T.: Tracking interface and common curve dynamics for two-fluid flow in porous media. J. Fluid Mech. 796, 211–232 (2016)
65. Moebius, F., Or, D.: Inertial forces affect fluid front displacement dynamics in a pore-throat network model. Phys. Rev. E 90, 023019 (2014)
66. Morrow, N.R.: Physics and thermodynamics of capillary action in porous media. Ind. Eng. Chem. 62(6), 32–56 (1970)
67. Morrow, N.R., Cram, P.J., McCaffery, F.G.: Displacement studies in dolomite with wettability control by octanoic acid. SPE J. 13(4), 221–232 (1973)
68. Niessner, J., Hassanizadeh, S.M.: Modeling kinetic interphase mass transfer for two-phase flow in porous media including fluid–fluid interfacial area. Transp. Porous Media 80, 329–344 (2009a)
69. Niessner, J., Hassanizadeh, S.M.: Non-equilibrium interphase heat and mass transfer during two-phase flow in porous media—theoretical considerations and modeling. Adv. Water Resour. 32, 1756–1766 (2009b)
70. Niessner, J., Berg, S., Hassanizadeh, M.S.: Comparison of two-phase Darcy’s law with a thermodynamically consistent approach. Transp. Porous Media 88, 133–148 (2011)
71. Panfilov, M., Panfilova, I.: Phenomenological meniscus model for two-phase flows in porous media. Transp. Porous Media 58, 87–119 (2005)
72. Peaceman, D.W.: Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. SPE J. 23(3), 531–543 (1983)
73. Porter, M.L., Schaap, M.G., Wildenschild, D.: Lattice–Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media. Adv. Water Resour. 32, 1632–1640 (2009)
74. Pyrak-Nolte, L.J., Nolte, D.D., Cheng, J.-T., Giordano, N.J.: Relating capillary pressure to interfacial areas. Water Resour. Res. 44, W04608 (2008).
75. Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231, 5653–5668 (2012)
76. Ramstad, T., Øren, P.-E., Bakke, S.: Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method, SPE 124617. SPE J. 15(4), 917–927 (2010)
77. Reeves, P.C., Celia, M.A.: A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resour. Res. 32(8), 2345–2358 (1996)
78. Reynolds, C.A., Menke, H., Andrew, M., Blunt, M.J., Krevor, S.: Dynamic fluid connectivity during steady-state multiphase flow in a sandstone. Proc. Natl. Acad. Sci. 114(31), 8187–8192 (2017)
79. Rose, W.: Attaching new meanings to the equations of Buckley and Leverett. J. Pet. Sci. Eng. 1, 223–228 (1988)
80. Rose, W.: Coupling coefficients for two-phase flow in pore spaces of simple geometry. Transp. Porous Media 5, 97–102 (1990)
81. Rose, W.: Critical questions about the coupling hypothesis. J. Pet. Sci. Eng. 5, 299–307 (1991)
82. Saripalli, K.P.: Use of interfacial tracers for characterization of nonaqueous phase liquid (NAPL). Ph.D., dissertation, University of Florida (1996)Google Scholar
83. Saripalli, K.P., Kim, H., Suresh, P., Rao, C., Annable, M.D.: Measurement of specific fluid-fluid interfacial areas of immiscible fluids in porous media. Environ. Sci. Technol. 31(3), 932–936 (1997)
84. Schülter, S., Berg, S., Li, T., Vogel, H.-J., Wildenschild, D.: Time scales of relaxation dynamics during transient conditions. Water Resour. Res. 53, 4709–4724 (2017)
85. Seth, S., Morrow, N.R.: Efficiency of conversion of work of drainage to surface energy for sandstone and carbonate. SPE Reserv. Eval. Eng. 10(4), 338–347 (2007)
86. ShamsiJazeyi, H., Miller, C.A., Wong, M.S., Tour, J.M., Verduzco, R.: Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 131(15), 40576 (2014)
87. Singh, K., Bijeljic, J., Blunt, M.J.: Imaging of oil layers, curvature and contact angle in a mixed wet and a water-wet carbonate rock. Water Resour. Res. 52, 1716–1728 (2016)
88. Singh, K., Menke, H., Andrew, M., Lin, Q., Rau, C., Blunt, M.J., Bijeljic, B.: Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Sci. Rep. 7, 5192 (2017).
89. Shapiro, A.A.: Two-phase immiscible flows in porous media: the mesoscopic Maxwell–Stefan approach. Transp. Porous Media 107, 335–363 (2015)
90. Shapiro, A.A.: Mechanics of a separating surface for a two-phase co-current flow in a porous medium. Transp. Porous Media 112, 489–517 (2016)
91. Shapiro, A.A., Stenby, E.H.: On the nonequilibrium segregation state of a two-phase mixture in a porous column. Transp. Porous Media 23, 83–106 (1996)
92. Shvidler, M.I.: Two-phase flow equations in porous media providing for the phase interaction. Izvestiia Akademii Nauk SSSR, Mekhanika, Mashinostroenie 1, 131–134 (1961)Google Scholar
93. Tang, G.Q., Morrow, N.R.: Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. J. Pet. Sci. Eng. 24(2–4), 99–111 (1999)
94. Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Dover Publications, New York (1963)Google Scholar
95. Valdes-Parada, F., Alberto Ohoa-Thapia, J., Alvarez-Ramirez, J.: On the effective viscosity for the Darcy–Brinkman equation. Physics A 385, 69–79 (2007)
96. Vogel, H.-J., Tölke, J., Schultz, V.P., Krafczyk, M., Roth, K.: Comparison of a lattice-Boltzmann model a full morphology model, and a pore network model for determining capillary pressure–saturation relationships. Vadose Zone J. 4, 380–388 (2005)
97. Wesselingh, J.A., Krishna, R.: Mass Transfer in Multicomponent Mixtures. VSSD, Delft (2000)Google Scholar
98. Whitaker, S.: Flow in porous media 1: a theoretical derivation of Darcy’s Law. Transp. Porous Media 1, 3–25 (1986a)
99. Whitaker, S.: Flow in porous media 2: the governing equations for immiscible, two-phase flow. Transp. Porous Media 1, 105–125 (1986b)
100. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)
101. Yuster, S.T.: Theoretical consideration of multiphase flows in idealized capillary systems. Proc. Third World Pet. Congr. 2, 437–445 (1951)Google Scholar