Skip to main content
Log in

Three-Phase Fractional Flow Analysis for Foam-Assisted Non-aqueous Phase Liquid (NAPL) Remediation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Among numerous foam applications in a wide range of disciplines, foam flow in porous media has been spotlighted for improved/enhanced oil recovery processes and shallow subsurface in situ NAPL (non-aqueous phase liquid) remediation, where foams can reduce the mobility of gas phase by increasing effective gas viscosity and improve sweep efficiency by mitigating subsurface heterogeneity. This study investigates how foams interact with and displace oleic contaminants in remediation treatments by using MoC (Method of Characteristics)-based three-phase fractional flow theory. Six different scenarios are considered such as different levels of foam strength (i.e., gas mobility reduction factors), different initial conditions (i.e., initially oil/water or oil/water/gas present), foam stability affected by water saturation \(({S}_{\mathrm{w}})\) and oil saturation \(({S}_{\mathrm{o}})\), and uniform versus non-uniform initial saturations. The process is analyzed by using ternary diagrams, fractional flow curves, effluent histories, saturation profiles, time–distance diagrams, and pressure and recovery histories. The results show that the three-phase fractional flow analysis presented in this study is robust enough to analyze foam–oil displacements in various conditions, as validated by an in-house numerical simulator built in this study. The use of numerical simulation seems crucial when the foam process becomes very complicated and faces multiple possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Afsharpoor, A., Lee, G.S., Kam, S.I.: Mechanistic simulation of continuous gas injection period during surfactant-alternating-gas (SAG) processes using foam catastrophe theory. Chem. Eng. Sci. 65(11), 3615–3631 (2010)

    Article  Google Scholar 

  • Aronson, A.S., Bergeron, V., Fagan, M.E., Radke, C.J.: The influence of disjoining pressure on foam stability and flow in porous media. Colloids Surf. A: Physicochem. Eng. Aspects 83(2), 109–120 (1994)

    Article  Google Scholar 

  • Ashoori, E., Heijden, T.L.M.V.D., Rossen, W.R.: Fractional-flow theory of foam displacements with oil. SPE 15(2), 260–273 (2010)

    Article  Google Scholar 

  • Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sand. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  • Dake, L.P.: Fundamentals of Reservoir Engineering. Elsevier, New York (1978)

    Google Scholar 

  • Dholkawala, Z.F., Sarma, H.K., Kam, S.I.: Application of fractional flow theory to foams in porous media. J. Petroleum Sci. Eng. 57(1–2), 152–165 (2007)

    Article  Google Scholar 

  • Falls, A.H., Schulte, W.M.: Theory of three-component, three-phase displacement in porous media. SPE 7(3), 377–384 (1992a)

    Google Scholar 

  • Falls, A.H., Schulte, W.M.: Features of three-component, three-phase displacement in porous media. SPE 7(4), 426–432 (1992b)

    Google Scholar 

  • Helfferich, F.G., Klein, G. (eds.) Multicomponent Chromatography: Theory of Interference. Marcel Dekker, New York (1970)

  • Helfferich, F.G.: Theory of multicomponent. Multiphase displacement in porous media. SPE 21(1), 51–62 (1981)

    Article  Google Scholar 

  • Hirasaki, G. J., Miller, C. A., Szafranski, R., Lawson, J. B., Akiya, N.: Surfactant/foam process for aquifer remediation. SPE International Symposium on Oilfield Chemistry, 18–21 Feb, Houston, TX (1997)

  • Hirasaki, G.J., Jackson, R.E., Jin, M., Lawson, J.B., Londergan, J., Meinardus, H., Miller, C.A., Pope, G.A., Szafranski, R., Tanzil, D.: Field demonstration of the surfactant/foam preocess for remediation of a heterogeneous aquifer contaminated with DNAPL. In: Fiorenza, S., Miller, C.A., Oubre, C.L., Ward, C.H. (eds.) NAPL Removeal: Surfactant, Foams, and Microemulstions. Lewis Publishers, Boca Raton (2000)

    Google Scholar 

  • Jimenez, A. I., Radke, C. J.: Dynamic stability of foam lamellae flowing through a periodically constricted pore. In: Borchardt, J.K., Yen, T.F. (eds.) Oil Field Chemistry: Enhanced Recovery and Production Stimulation, Symposium Series, Vol. 396, pp. 460–479. ACS, Washington, DC (1989)

  • Kam, S.I., Rossen, W.R.: A model for foam generation in homogeneous porous media. SPEJ 8(4), 417–425 (2003)

    Article  Google Scholar 

  • Khatib, Z.I., Hlrasaki, G.J., Falls, A.H.: Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media. SPE 3(3), 919–926 (1988)

    Google Scholar 

  • Koczo, K., Lobo, L.A., Wasan, D.T.: Effect of oil on foam stability: aqueous foams stabilized by emulsions. J. Colloid Interf. Sci. 150(2), 492–506 (1992)

    Article  Google Scholar 

  • Lake, L.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs, NJ (1989)

    Google Scholar 

  • Law, D.H.-S., Yang, Z.M., Stone, T.W.: Effect of the presence of oil on foam performance: a field simulation study. SPE 7(2), 228–236 (1992)

    Google Scholar 

  • Lee, S., Kam, S. I.: Enhanced oil recovery by using \(\text{ CO }_{2}\) foams: fundamentals and field applications. In: Sheng, J. (ed.) Enhanced Oil Recovery Field Case Studies. Elsevier, Burlington (2013)

  • Londergan, J.T., Meinardus, H.W., Mariner, P.E., Jackson, R.E., Brown, C.L., Dwarakanath, V., Pope, G.A.: DNAPL removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation. Ground Water Monit. Remediat. 21(4), 57–67 (2001)

    Article  Google Scholar 

  • Mannhardt, K., Svorstøl, I.: Effect of oil saturation on foam propagation in Snorre reservoir core. J. Petroleum Sci. Eng. 23(3), 189–200 (1999)

    Article  Google Scholar 

  • Mamun, C.K., Rong, J.G., Kam, S.I., Liljestrand, H.M., Rossen, W.R.: Extending foam technology from improved oil recovery to environmental remediation. SPE Annual Technical Conference and Exhibition, 29 Sept–2 Oct, San Antonio, TX (2002)

  • Mayberry, D.J., Afsharpoor, A., Kam, S.I.: The use of fractional-flow theory for foam displacement in presence of oil. SPE 11(4), 707–718 (2008)

    Google Scholar 

  • Mackay, D.M., Cherry, J.A.: Groundwater contamination: pump-and-treat remediation. Environ. Sci. Technol. 23(6), 630–636 (1989)

    Article  Google Scholar 

  • Nikolov, A.D., Wasan, D.T., Huang, D.W., Edwards, D.A.: The effect of oil on foam stability: mechanisms and implications for oil displacement by foam in porous media. SPE Annual Technical Conference and Exhibition, 5–8 Oct, New Orleans, Louisiana (1986)

  • Peters, R.W., Enzien, M.V., Michelsen, D.L., Frand, J.R.: Solubilization of NAPLs in foam enhanced remediation. In: Reddy, K. R. (ed.) Proceedings of the Fourth Great Lakes Geotechnical and Geoenvironmental Conference on In-Situ Remediation of Contaminated Sites, pp. 255–261. University of Illinois at Chacago, Chicago (1996)

  • Pope, G.A.: The application of fractional flow theory to enhanced oil recovery. SPE 20(3), 191–205 (1980)

    Article  Google Scholar 

  • Prud’Homme, R.K., Khan, S. (eds.) Foams: Theory, Measurements and Applications. Marcel Dekker, New York (1996)

  • Roostapour, A., Kam, S.I.: Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics. J. Harzadous Mater. 243, 37–51 (2012)

    Article  Google Scholar 

  • Roostapour, A., Kam, S.I.: Anomalous foam-fractional-flow solutions at high-injection foam quality. SPEREE 16(1), 40–50 (2013)

    Article  Google Scholar 

  • Rosman, A., Kam, S.I.: Modeling foam-diversion process using three-phase fractional flow analysis in a layered system. Energy Sources Part A 31, 936–955 (2009). doi:10.1080/15567030701752875

    Article  Google Scholar 

  • Rossen, W.R., Zhou, Z.H.: Modeling foam mobility at the “limiting capillary pressure”. SPE Adv. Technol. 3(1), 146–153 (1995)

    Article  Google Scholar 

  • Rossen, W.R.: Foams in enhanced oil recovery. In: Prud’Homme, R.K., Khan, S. (eds.) Foams: Theory, Measurements and Application. Marcel Dekker, New York (1996)

    Google Scholar 

  • Schramm, L.L. (ed.) Foams: fundamentals and Applications in the Petroleum Industry, Advances in Chemistry Series, Vol. 242. ACS, Washington, DC (1994)

  • Svorstøl, I., Vassenden, F., Mannhardt, K.: Laboratory Studies for Design of a Foam Pilot in the Snorre Field. SPE/DOE Improved Oil Recovery Symposium, 21–24 April, Tulsa, Oklahoma (1996)

  • Zanganeh, M.N., Kam, S.I., LaForce, T.C., Rossen, W.R.: The method of characteristics applied to oil displacement by foam. SPE 16(1), 8–23 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Lee, G. & Kam, S.I. Three-Phase Fractional Flow Analysis for Foam-Assisted Non-aqueous Phase Liquid (NAPL) Remediation. Transp Porous Med 101, 373–400 (2014). https://doi.org/10.1007/s11242-013-0250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0250-y

Keywords

Navigation