Skip to main content
Log in

Effective Thermal Conductivity Modelling for Closed-Cell Porous Media with Analytical Shape Factors

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper presents a fully analytical model for the effective thermal conductivity of two-phase porous media with two-/three-dimensional closed cells, applicable to honeycombs and closed-cell foams. The present model combines an existing analytical expression derived based on the Laplace heat conduction equation with an analytical shape factor which corrects the deviation caused from a non-circular (or non-spherical) pore inclusion. Results demonstrate the validity of the present model capable of analytically estimating the effective thermal conductivity of closed-cell porous media. The simple yet accurate model provides the physical mechanisms of how effective thermal conductivity depends upon the shape of pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(A\) :

Area of a regular polygon (\(\hbox {m}^{2})\)

\(C\) :

Perimeter of a representative pore (m)

\(C_\mathrm{{ref}}\) :

Perimeter of a reference circular pore (m)

\(k_\mathrm{{c}} \) :

Thermal conductivity of a continuous phase (\(\hbox {W m}^{-1 }\,\hbox {K}^{-1})\)

\(k_\mathrm{{e}}\) :

Effective thermal conductivity of porous media (\(\hbox {W m}^{-1 }\,\hbox {K}^{-1})\)

\(k_\mathrm{{p}}\) :

Thermal conductivity of a discrete phase (pores) (\(\hbox {W m}^{-1 }\,\hbox {K}^{-1})\)

\(n\) :

Number of the sides of a regular polygon

\(R\) :

Radius of a reference circular pore (m)

\(S\) :

Surface area of a polyhedral pore (\(\hbox {m}^{2})\)

\(S_\mathrm{{ref}}\) :

Surface area of a reference spherical pore (\(\hbox {m}^{2})\)

\(V\) :

Total volume in a porous medium (\(\hbox {m}^{3})\)

\(V_0\) :

Total volume of an unperturbed continuous medium (\(\hbox {m}^{3})\)

\(\beta \) :

Shape factor of a representative pore

\(\beta _2\) :

Two-dimensional shape factor

\(\beta _3\) :

Three-dimensional shape factor

\(\varepsilon \) :

Porosity

References

  • Amjad, S.: Thermal conductivity and noise attenuation in aluminium foams. University of Cambridge, M. Ph. dissertation (2001)

  • Babcsán, N., Mészáros, I., Hegman, N.: Thermal and electrical conductivity measurements on aluminum foams. Materialwissenschaft und Werkstofftechnik 34(4), 391–394 (2003)

    Article  Google Scholar 

  • Bauer, T.: A general analytical approach toward the thermal conductivity of porous media. Int. J. Heat Mass Transf. 36(17), 4181–4191 (1993)

    Article  Google Scholar 

  • Belova, I., Murch, G.: Monte Carlo simulation of the effective thermal conductivity in two-phase material. J. Mater. Process. Technol. 153, 741–745 (2004)

    Google Scholar 

  • Bruggeman, D.: The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann. Phys. 24(132), 636–679 (1935)

    Article  Google Scholar 

  • Collishaw, P., Evans, J.: An assessment of expressions for the apparent thermal conductivity of cellular materials. J. Mater. Sci. 29(2), 486–498 (1994)

    Article  Google Scholar 

  • Coquard, R., Baillis, D.: Numerical investigation of conductive heat transfer in high-porosity foams. Acta Materialia 57(18), 5466–5479 (2009)

    Article  Google Scholar 

  • Coquard, R., Rochais, D., Baillis, D.: Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams. Int. J. Heat Mass Transf. 52(21), 4907–4918 (2009)

    Article  Google Scholar 

  • Coquard, R., Rochais, D., Baillis, D.: Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures. Fire Technol. 48(3), 699–732 (2012a)

    Article  Google Scholar 

  • Coquard, R., Rousseau, B., Echegut, P., Baillis, D., Gomart, H., Iacona, E.: Investigations of the radiative properties of Al-NiP foams using tomographic images and stereoscopic micrographs. Int. J. Heat Mass Transf. 55(5), 1606–1619 (2012b)

    Article  Google Scholar 

  • Doermann, D., Sacadura, J.: Heat transfer in open cell foam insulation. J. Heat Transf. 118(1), 88–93 (1996)

    Article  Google Scholar 

  • Eucken, A.: Allgemeine Gesetzmäßigkeiten für das Wärmeleitvermögen verschiedener Stoffarten und Aggregatzustände. Forschung im Ingenieurwesen 11(1), 6–20 (1940)

    Article  Google Scholar 

  • Fiedler, T., Belova, I., Murch, G.: Theoretical and Lattice Monte Carlo analyses on thermal conduction in cellular metals. Comput. Mater. Sci. 50(2), 503–509 (2010)

    Article  Google Scholar 

  • Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties. Cambridge university press, Cambridge (1999)

    Google Scholar 

  • Hamilton, R., Crosser, O.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)

    Article  Google Scholar 

  • Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33(10), 3125–3131 (1962)

    Article  Google Scholar 

  • Hyun, S., Torquato, S.: Effective elastic and transport properties of regular honeycombs for all densities. J. Mater. Res. Pittsbg. 15(9), 1985–1993 (2000)

    Google Scholar 

  • Hyun, S., Torquato, S.: Optimal and manufacturable two-dimensional, Kagome-like cellular solids. J. Mater. Res. Pittsbg. 17(1), 137–144 (2002)

    Article  Google Scholar 

  • Kaviany, M.: Principles of heat transfer in porous, media. Springer, New York (1991)

    Book  Google Scholar 

  • Kirkpatrick, S.: Percolation and conduction. Rev. Mod. Phys. 45(4), 574 (1973)

    Article  Google Scholar 

  • Klett, J., McMillan, A., Gallego, N., Walls, C.: The role of structure on the thermal properties of graphitic foams. J. Mater. Sci. 39(11), 3659–3676 (2004)

    Article  Google Scholar 

  • Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23(7), 779–784 (1952)

    Article  Google Scholar 

  • Lu, T.J.: Heat transfer efficiency of metal honeycombs. Int. J. Heat Mass Transf. 42(11), 2031–2040 (1998)

    Article  Google Scholar 

  • Lu, T.J., Chen, C.: Thermal transport and fire retardance properties of cellular aluminium alloys. Acta Materialia 47(5), 1469–1485 (1999)

    Article  Google Scholar 

  • Lu, T.J., Stone, H., Ashby, M.: Heat transfer in open-cell metal foams. Acta Materialia 46(10), 3619–3635 (1998)

    Article  Google Scholar 

  • Maxwell, J.C.: A treatise on electricity and magnetism, vol. 1. Clarendon Press, Oxford (1881)

    Google Scholar 

  • Miyoshi, T., Itoh, M., Akiyama, S., Kitahara, A.: ALPORAS aluminum foam: production process, properties, and applications. Adv. Eng. Mater. 2(4), 179–183 (2000)

    Article  Google Scholar 

  • Norton, F.J.: Thermal conductivity and life of polymer foams. J. Cell. Plast. 3(1), 23–37 (1967)

    Article  Google Scholar 

  • Progelhof, R., Throne, J.: Cooling of structural foams. J. Cell. Plast. 11(3), 152–163 (1975)

    Article  Google Scholar 

  • Progelhof, R., Throne, J., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym. Eng. Sci. 16(9), 615–625 (1976)

    Article  Google Scholar 

  • Ratcliffe, E.: Estimation of the effective thermal conductivities of two-phase media. J. Appl. Chem. 18(1), 25–30 (1968)

    Article  Google Scholar 

  • Rayleigh, L.: LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 34(211), 481–502 (1892)

    Article  Google Scholar 

  • Russell, H.: Principles of heat flow in porous insulators. J. Am. Ceram. Soc. 18(1–12), 1–5 (1935)

    Article  Google Scholar 

  • Sahimi, M., Gavalas, G.R., Tsotsis, T.T.: Statistical and continuum models of fluid-solid reactions in porous media. Chem. Eng. Sci. 45(6), 1443–1502 (1990)

    Article  Google Scholar 

  • Schumacher, P., Greer, A.: Nucleation of a-Al On grain refining particles studied in crystallization Of amorphous Al-alloys. In: Proceeding 4th international conference on aluminum alloys, Atlanta. Georgia, 1. pp. 11–16 (1994)

  • Solórzano, E., Reglero, J., Rodríguez-Pérez, M., Lehmhus, D., Wichmann, M., De Saja, J.: An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. Int. J. Heat Mass Transf. 51(25), 6259–6267 (2008a)

  • Solórzano, E., Rodriguez-Perez, M., de Saja, J.: Thermal conductivity of cellular metals measured by the transient plane sour method. Adv. Eng. Mater. 10(4), 371–377 (2008b)

    Article  Google Scholar 

  • Temu, A., Naess, E., Sønju, O.: Development and testing of a probe to monitor gas-side fouling in cross flow. Heat Transf. Eng. 23(3), 50–59 (2002)

    Article  Google Scholar 

  • Thompson, M.: On the division of space with minimum partitional area. Lond. Edinb. Dublin Philos. Mag. J. Sci. 5(24), 503–514 (1887)

    Google Scholar 

  • Tsotsas, E., Martin, H.: Thermal conductivity of packed beds: a review. Chem. Eng. Process. Process Intensif. 22(1), 19–37 (1987)

    Article  Google Scholar 

  • Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 41, 443–451 (1932)

    Article  Google Scholar 

  • Wadell, H.: Sphericity and roundness of rock particles. J. Geol. 41, 310–331 (1933)

    Article  Google Scholar 

  • Wang, M., He, J., Yu, J., Pan, N.: Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Int. J. Therm. Sci. 46(9), 848–855 (2007)

    Article  Google Scholar 

  • Wang, M., Wang, J., Pan, N., Chen, S., He, J.: Three-dimensional effect on the effective thermal conductivity of porous media. J. Phys. D Appl. Phys. 40(1), 260 (2006)

    Article  Google Scholar 

  • Woodside, W.T., Messmer, J.: Thermal conductivity of porous media. I. Unconsolidated sands. J. Appl. Phys. 32(9), 1688–1699 (1961)

    Article  Google Scholar 

  • Wyllie, M., Gregory, A.: Formation factors of unconsolidated porous media: influence of particle shape and effect of cementation. J. Petroleum Technol. 5(4), 103–110 (1953)

    Google Scholar 

  • Yamada, E., Ota, T.: Effective thermal conductivity of dispersed materials. Heat Mass Transf. 13(1), 27–37 (1980)

    Google Scholar 

  • Zhang, B., Kim, T., Lu, T.J.: Analytical solution for solidification of close-celled metal foams. Int. J. Heat Mass Transf. 52(1), 133–141 (2009)

    Article  Google Scholar 

  • Zhang, Q.C., Lu, T.J., He, S.Y., He, D.P.: Control of pore morphology in closed-celled aluminum foams. J. Xi’an Jiaotong Univ. 41, 255–270 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National 111 Project of China (B06024), the National Basic Research Program of China (2011CB610305), the Major International Joint Research Program of China (11120101002) and the National Natural Science Foundation of China (51206128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianjian Lu or Tongbeum Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Lu, T. & Kim, T. Effective Thermal Conductivity Modelling for Closed-Cell Porous Media with Analytical Shape Factors. Transp Porous Med 100, 211–224 (2013). https://doi.org/10.1007/s11242-013-0212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0212-4

Keywords

Navigation