Skip to main content
Log in

An assessment of expressions for the apparent thermal conductivity of cellular materials

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diverse expressions for the thermal conductivity of cellular materials are reviewed. Most expressions address only the conductive contribution to heat transfer; some expressions also consider the radiative contribution. Convection is considered to be negligible for cell diameters less than 4 mm. The predicted results are compared with measured conductivities for materials ranging from fine-pore foams to coarse packaging materials. The dependencies of the predicted conductivities on the material parameters which are most open to intervention are presented graphically for the various models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Absorption coefficient

C v (Jmol−1 K−1):

Specific heat

E :

Emissivity

E L :

Emissivity of hypothetical thin parallel layer

E 0 :

Boundary surfaces emissivity

f :

Fraction of solid normal to heat flow

fics:

Fraction of total solid in struts of cell

K(m−1):

Mean extinction coefficient

k(W m−1 K−1):

Effective thermal conductivity of foam

k cd(W m−1 K−1):

Conductive contribution

k cr(W m−1 K−1):

Convective contribution

k g(W m−1 K−1):

Thermal conductivity of cell gas

k r(W m−1 K−1):

Radiative contribution

k s(W m−1 K−1):

Thermal conductivity of solid

L(m):

Thickness of sample

L g(m):

Diameter of cell

L s(m):

Cell-wall thickness

n :

Number of cell layers

r :

Reflection coefficient

t :

Transmission coefficient

T(K):

Absolute temperature

T m(K):

Mean temperature

T N :

Fraction of energy passing through cell wall

T 1(K):

Temperature of hot plate

T 2(K):

Temperature of cold plate

V g :

Volume fraction of gas

V w :

Volume fraction of total solid in the windows

w :

Refractive index

δ(m):

Effective molecular diameter

η(Pa s):

Gas viscosity

θ:

Structural angle with respect to rise direction

σ(W m−2 K−4):

Stefan constant

References

  1. House of Commons Energy Committee, Sixth Report, Energy Policy Implications of the Greenhouse Effect (Her Majesty's Stationery Office, London 1989) Vol. 1, para. 102.

    Google Scholar 

  2. R. C. Progelhof, J. L. Throne andR. R. Ruetsch,Polym. Engng. Sci. 16 (1976) 615.

    Google Scholar 

  3. D. K. Hale,J. Mater. Sci. 11 (1976) 2105.

    Google Scholar 

  4. R. Taylor, in “International encyclopedia of composites”, edited by S. M. Lee Vol. 5, (VCH, New York, 1991) pp. 530–548.

    Google Scholar 

  5. J. T. Mottram andR. Taylor,ibid.“ Vol. 5, (VCH, New York, 1991) pp. 476–496.

    Google Scholar 

  6. R. A. Crane, R. I. Vachon andM. S. Khader, Proceedings of the Seventh Symposium on Thermophysical Properties, Galthersberg, MD, USA (American Society for Mechanical Engineers, NY, USA, 1977) pp. 109–123.

    Google Scholar 

  7. J. A. Valenzuela andL. R. Glicksman, in Thermal Insulation, Materials and Systems for Energy Conservation in the 80's, ASTM STP 789, edited by F. A. Govan, D. M. Greason, J. D. McAllister (American Society for Testing and Materials, Philadelphia, USA) pp. 688–702.

  8. J. C. Maxwell, “A treatise on electricity and magnetism”, Vol. 1 (Clarendon Press, Oxford 1892) p. 440.

    Google Scholar 

  9. W. Woodside andJ. H. Messmer,J. Appl. Phys. 32 (1961) 1688.

    Google Scholar 

  10. A. V. Liukov, A. G. Shashkor, L. L. Vasiliev andYu. E. Fraisman Int. J. Heat Mass Transfer 11 (1968) 117.

    Google Scholar 

  11. R. L. Hamilton andO. K. Crosser,Ind. Engng. Chem. Fundam. 1 (1962) 187.

    Google Scholar 

  12. D. Tabor, “Gases, liquids and solids”, 2nd Edn (Cambridge University Press, Cambridge, 1979) p. 57.

    Google Scholar 

  13. M. E. Stephenson andM. Mark,Amer. Soc. Heat., Refrig. Air Conditioning Engineers J.,3 February (1961) 75.

    Google Scholar 

  14. G. T-N. Tsao,Ind. Engng. Chem. 53 (1961) 395.

    Google Scholar 

  15. A. Sugawaru andY. Yoshizawa,J. Appl. Phys. 33 (1962) 3135.

    Google Scholar 

  16. A. W. Pratt, in “Thermal conductivity, “edited by R. P. Tye, Vol. 1 (Academic Press, London 1969) p. 319.

    Google Scholar 

  17. C. H. Lees,Phil. Mag. 49 (1900) 221.

    Google Scholar 

  18. Z. Hashin andS. Shtrikman,J. Appl. Phys. 33 (1962) 3125.

    Google Scholar 

  19. D. J. Doherty, R. Hurd andG. R. Lester,Chem. Ind. July (1962) 1340.

  20. S. Baxter andT. T. Jones,Plastics Polym. 40 (1972) 69.

    Google Scholar 

  21. F. K. Brockhagen andW. Schmidt, in “Polyurethane Foams”, edited by T. T. Healy (Iliffe, London, 1964) pp. 93–144.

    Google Scholar 

  22. E. Kerner,Proc. Phys. Soc. B 369 (1956) 802.

    Google Scholar 

  23. A. D. Brailsford andK. G. Major,Brit. J. Appl. Phys. 15 (1964) 313.

    Google Scholar 

  24. T. Zhang, J. R. G. Evans andK. K. Dutta,J. Euro. Ceram. Soc. 5 (1989) 303.

    Google Scholar 

  25. R. Hamilton andO. Crosser,Ind. Engng. Chem. Fundam. 1 (1962) 187.

    Google Scholar 

  26. M. H. Kuok, H. K. Sy andK. L. Tan,Reg. J. Energy, Heat Mass Transfer 7 (1985) 17.

    Google Scholar 

  27. S. Oka andK. Yamone,Jpn. J. Appl. Phys. 6 (1967) 469.

    Google Scholar 

  28. R. M. Barrer, in “Diffusion in polymers” Edited by J. Crank and G. S. Park, (Academic Press, London 1968) pp. 165–216.

    Google Scholar 

  29. Von D. A. G. Bruggeman,Ann. Phys. 5 (1935) 636.

    Google Scholar 

  30. R. C. Progelhof andJ. L. Throne,J. Cell. Plast. 11 (1975) 152.

    Google Scholar 

  31. A. Eucken,Forsch. Gebiete Ingenieuru B3 Forschurgshaft No. 353 (1932) 16.

    Google Scholar 

  32. H. W. Russell,J. Amer. Ceram Soc. 18 (1939) 1.

    Google Scholar 

  33. B. Budiansky,J. Compos. Mater. 4 (1970) 286.

    Google Scholar 

  34. T. B. Jefferson, O. W. Witzell andW. L. Sibbitt,Ind. Engng. Chem. 50 (1958) 1589

    Google Scholar 

  35. L. Topper,Ind. Engng. Chem. 47 (1955) 1377.

    Google Scholar 

  36. S. C. Cheng andR. I. Vachon,Int. J. Heat Mass Transfer 13 (1970) 537.

    Google Scholar 

  37. D. Bedeaux andR. Kapral,J. Chem. Phys. 79 (1983) 1783.

    Google Scholar 

  38. L. E. Nielsen,J. Appl. Polym. Sci. 17 (1973) 3819.

    Google Scholar 

  39. Idem., Ind. Engng. Chem. Fundam. 13 (1974) 17.

    Google Scholar 

  40. Idem., Appl. Polym. Symp. 12 (1966) 249.

    Google Scholar 

  41. J. M. Peterson andJ. J. Hermans,J. Compos. Mater. 3 (1969) 338.

    Google Scholar 

  42. M. M. Levy,J. Cell. Plastics 2 (1966) 37.

    Google Scholar 

  43. D. Bhattacharjee, J. A. King andK. N. Whitehead,ibid. 27 (1991) 240.

    Google Scholar 

  44. R. J. Harding,ibid. 1 (1965) 224.

    Google Scholar 

  45. Idem., ibid. 1 (1965) 385.

    Google Scholar 

  46. F. J. Norton,ibid. 3 (1967) 23.

    Google Scholar 

  47. C. J. Hilado andW. R. Proops,ibid. 5 (1969) 299.

    Google Scholar 

  48. G. W. Ball, R. Hurd andM. G. Walker,ibid. 6 (1970) 66.

    Google Scholar 

  49. R. R. Dixon, L. E. Edelman andD. K. McLain,ibid. 6, (1970) 44.

    Google Scholar 

  50. M. Bomberg,ibid. 26 (1990) 275.

    Google Scholar 

  51. T. T. Jones,Plastics Polym. 40 February (1972) 33.

    Google Scholar 

  52. R. Boetes andC. J. Hoogendoorn,Proc. Int. Cent., Heat Mass Trans. 24 (1987) 14.

    Google Scholar 

  53. L. Glickman, M. Schuetz andM. Sinofsky,Int. J. Heat Mass. Trans. 30 (1987) 187.

    Google Scholar 

  54. M. A. Schuetz andL. R. Glicksman,J. Cell. Plast. 20 (1984) 114.

    Google Scholar 

  55. L. R. Glicksman,Cellular Polym. 10 (1991) 276.

    Google Scholar 

  56. A. Cunningham,Proc. Int. Cent. Heat Mass Trans. 24 (1987) 32.

    Google Scholar 

  57. R. J. J. Williams, C. M. Aldao,Polym. Engng. Sci. 23, (1983) 293.

    Google Scholar 

  58. M. Garbuny, “Optical Physics”, (Academic Press, NY, 1965) p. 257.

    Google Scholar 

  59. A. L. Loeb,J. Amer. Ceram. Soc. 37 (1954) 96.

    Google Scholar 

  60. J. Francl andW. D. Kingery,ibid. 37 (1954) 99.

    Google Scholar 

  61. W. J. Batty, S. D. Probert andP. W. O'Callaghan,Appl. Energy 18 (1984) 117.

    Google Scholar 

  62. R. J. Harding,J. Cell. Plast. 2 (1966) 206.

    Google Scholar 

  63. R. Caps, A. Trunger, D. Buttner andJ. Fricke,Int. J. Heat and Mass Transf. 27 (1984) 1865.

    Google Scholar 

  64. J. Fricke, R. Caps, D. Buttner, U. Heinemann andE. Hummer,J. Non-Cryst. Sol. 95–96 (1987) 1167.

    Google Scholar 

  65. R. Caps andJ. Fricke,Solar Energy 36 (1986) 361.

    Google Scholar 

  66. T. W. Tong andC. L. Tien,Trans. ASME Ser. C. J. Heat Transfer 105 (1983) 70.

    Google Scholar 

  67. T. W. Tong, Q. S. Yang andC. L. Tien,ibid. 105 (1983) 76.

    Google Scholar 

  68. R. W. Skochdopole,Chem. Engng. Prog. 57(10) (1961) 55.

    Google Scholar 

  69. H. Jeffreys,Proc. Roy. Soc. A. 118 (1928) 195.

    Google Scholar 

  70. T. T. Healy, “Polyurethane foams (Iliffe, London, 1964) p. 121.

    Google Scholar 

  71. Anon, The properties of Dupont Vespel Parts, Technical Data Sheet (Dupont, Wilmington, DE, Undated).

  72. J. Fricke,J. Non-Cryst. Solids 100 (1988) 169.

    Google Scholar 

  73. R. C. Weast (editor) Handbook of Chemistry and Physics”, 55th Edn (CRC Press, Cleveland, Ohio 1974) p. E2.

    Google Scholar 

  74. C. R. Wilke,J. Chem. Phys. 18 (1950) 517.

    Google Scholar 

  75. Loc. cit.[12], pp. 69–70.

    Google Scholar 

  76. J. Fricke in Proceedings of the First International Symposium on Aerogels at Wurzberg 1985, edited by J. Fricke (Springer Verlag, Heidelberg, 1986) pp. 94–103.

    Google Scholar 

  77. D. Buttner, R. Caps, U. Heinemann, E. Hummer, A. Kadur andJ. Fricke,Solar Energy 40 (1988) 13.

    Google Scholar 

  78. D. Buttner, R. Caps andJ. Fricke,High Temp. High Pressures 17 (1985) 375.

    Google Scholar 

  79. J. Brandrup andE. H. Immergut, “Polymer Handbook”, 2nd Edn (Wiley, New York, 1974) p. VIII-9.

    Google Scholar 

  80. C. A. Dostal (editor) “Engineered Materials Handbook”, Vol. 2 (American Society for Metals, Metals Park, Ohio, 1988) p. 260.

    Google Scholar 

  81. Loc. cit.[80], p. 133.

    Google Scholar 

  82. BS874 Part 2, Tests for Thermal Conductivity and Related Properties, Section 2.1, Guarded hot plate method, (British Standards Institute, London, 1986).

  83. K. M. Haunton, J. K. Wright andJ. R. G. Evans,Brit. Ceram. Trans. J. 89 (1990) 53.

    Google Scholar 

  84. P. Hammond andJ. R. G. Evans,J. Mater. Sci. Lett. 10 (1991) 294.

    Google Scholar 

  85. J. Greener andJ. R. G. Evans,J. Mater. Sci. in press.

  86. W. Schramm,Bull. Amer. Ceram. Soc. 60 (1987) 1194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collishaw, P.G., Evans, J.R.G. An assessment of expressions for the apparent thermal conductivity of cellular materials. J Mater Sci 29, 486–498 (1994). https://doi.org/10.1007/BF01162512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162512

Keywords

Navigation