Skip to main content
Log in

Microbial community structure analysis of produced water from a high-temperature North Sea oil-field

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Molecular and culture-based methods were used to investigate the microbial diversity in produced water obtained from the high-temperature Troll oil formation in the North Sea. 16S rRNA gene libraries were generated from total community DNA, using universal archaeal or bacterial oligonucleotide primer sets. Sequence analysis of 88 clones in the bacterial library indicated that they originated from members of Firmicutes (48 sequences), Bacteroidetes (17 sequences), δ-Proteobacteria (15 sequences), Spirochaetes (5 sequences), Thermotogales (2 sequences) and γ-Proteobacteria (1 sequence). Twenty-two sequences in the archaeal library were close relatives to members of the genera Methanococcus (18 sequences), Methanolobus (3 sequences) and Thermococcus (1 sequence). Most of the bacterial sequences shared less than 95% identity with their closest match in GenBank, indicating that the produced water harbours a unique community of novel bacterial species or genera. Members of the thermophilic genera Thermosipho, Thermotoga, Anaerophaga and Thermovirga were isolated. The Troll formations are not injected with sea water. Thus, dramatic changes of the in situ conditions have been avoided, and a common source of continuous contamination from injection water can be excluded. However, the majority of the organisms detected in the gene libraries were most closely related to cultivated organisms with optimum temperatures for growth well below the in situ reservoir temperature (70°C), indicating that produced water from the Troll platform harbours a substantial amount of non-indigenous organisms. This was confirmed by the isolation of a number of mesophilic and moderately thermophilic organisms that were unable to grow at reservoir temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16s rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  PubMed  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  • Basso O, Lascourreges JF, Jarry M, Magot M (2005) The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environ Microbiol 7:13–21

    Article  PubMed  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucl Acids Res 33:D34–D38

    Article  PubMed  CAS  Google Scholar 

  • Birkeland NK (2004) The microbial diversity of deep subsurface oil reservoirs. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Petroleum biotechnology: developments and perspectives. Elsevier B.V., Amsterdam, pp 385–403

    Chapter  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L’Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151

    Article  PubMed  CAS  Google Scholar 

  • Cashion P, Holderfranklin MA, McCully J, Franklin M (1977) Rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  PubMed  CAS  Google Scholar 

  • Deley J, Cattoir H, Reynaert A (1970) Quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  CAS  Google Scholar 

  • Denger K, Warthmann R, Ludwig W, Schink B (2002) Anaerophaga thermohalophila gen. nov., sp nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52:173–178

    PubMed  Google Scholar 

  • Donachie SP, Bowman JP, On SLW, Alam M (2005) Arcobacter halophilus sp nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol 55:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Garnova ES, Zhilina TN, Tourova TP, Kostrikina NA, Zavarzin GA (2004) Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp nov from a soda lake in the Transbaikal region of Russia. Extremophiles 8:309–316

    Article  PubMed  CAS  Google Scholar 

  • Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443

    Article  PubMed  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO (1989) Thermosipho-africanus Gen-Nov, represents a new genus of thermophilic eubacteria within the Thermotogales. Syst Appl Microbiol 12:32–37

    Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the Spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 211–232

    Google Scholar 

  • Lane DJ (1991) 16 s/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucelic acid techniques in bacterial systematics. Wiley & Sons Ltd., Chichester, UK, pp 115–148

    Google Scholar 

  • L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya E, Stackebrandt E, Jeanthon C (2001) Thermosipho geolei sp nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334

    Google Scholar 

  • L’Haridon S, Reysenbach AL, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil-reservoir. Nature 377:223–224

    Article  CAS  Google Scholar 

  • Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2006) Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol Lett 257:92–98

    Article  PubMed  CAS  Google Scholar 

  • Lien T, Beeder J (1997) Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water–oil separation system. Int J Syst Bacteriol 47:1124–1128

    PubMed  CAS  Google Scholar 

  • Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 21–33

    Google Scholar 

  • Magot M, Caumette P, Desperrier JM, Matheron R, Dauga C, Grimont F, Carreau L (1992) Desulfovibrio-Longus Sp-Nov, a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol 42:398–403

    Article  PubMed  CAS  Google Scholar 

  • Magot M, Fardeau M-L, Arnauld O, Lanau C, Ollivier B, Thomas P, Patel BKC (1997) Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155:185–191

    Article  PubMed  CAS  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116

    Article  PubMed  CAS  Google Scholar 

  • McInerney MJ, Sublette KL (eds) (1997) Petroleum microbiology: biofouling, souring, and improved oil recovery. ASM Press, Washington, DC

    Google Scholar 

  • Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C, Nazina TN, Belyaev SS, Bonch-Osmolovskaya EA (2001) Isolation and characterization of Thermococcus sibiricus sp nov from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91

    Article  PubMed  CAS  Google Scholar 

  • Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731

    PubMed  CAS  Google Scholar 

  • Orphan VJ, Goffredi SK, Delong EF, Boles JR (2003) Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol J 20:295–311

    Article  CAS  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) Tree view: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Rainey FA, Dorsch M, Morgan HW, Stackebrandt E (1992) 16S rDNA analysis of Spirochaeta-thermophila—its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst Appl Microbiol 15:197–202

    CAS  Google Scholar 

  • Reysenbach A-L, Pace NR (1995) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. In: Robb FT, Place AR (eds) Archaea: a laboratory manual. Cold Spring Harbour Laboratory Press, New York, pp 101–107

    Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-Joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Slobodkin AI, Jeanthon C, L’Haridon S, Nazina T, Miroshnichenko M, Bonch-Osmolovskaya E (1999) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr Microbiol 39:99–102

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO, Huber R, Blochl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North-Sea and Alaskan oil-reservoirs. Nature 365:743–745

    Article  Google Scholar 

  • Tardy-Jacquenod C, Magot M, Patel BKC, Matheron R, Caumette P (1998) Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48:333–338

    PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids.3. Characterization of the filamentous gliding Desulfonema-limicola Gen-Nov Sp-Nov, and Desulfonema-magnum Sp-Nov. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Norwegian Research Council (grant no. 145854/110) to NKB. We are thankful to Malvin Sperre and Morten Teigland (both at Norsk Hydro) for access to samples and to M. Sperre for information about the chemical composition of produced water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils-Kåre Birkeland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahle, H., Garshol, F., Madsen, M. et al. Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek 93, 37–49 (2008). https://doi.org/10.1007/s10482-007-9177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9177-z

Keywords

Navigation