Skip to main content
Log in

The Onset of Darcy–Brinkman Electroconvection in a Dielectric Fluid Saturated Porous Layer

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The combined effect of a vertical AC electric field and the boundaries on the onset of Darcy–Brinkman convection in a dielectric fluid saturated porous layer heated either from below or above is investigated using linear stability theory. The isothermal bounding surfaces of the porous layer are considered to be either rigid or free. It is established that the principle of exchange of stability is valid irrespective of the nature of velocity boundary conditions. The eigenvalue problem is solved exactly for free–free (F/F) boundaries and numerically using the Galerkin technique for rigid–rigid (R/R) and lower-rigid and upper-free (F/R) boundaries. It is observed that all the boundaries exhibit qualitatively similar results. The presence of electric field is emphasized on the stability of the system and it is shown that increasing the AC electric Rayleigh number R ea is to facilitate the transfer of heat more effectively and to hasten the onset of Darcy–Brinkman convection. Whereas, increase in the ratio of viscosities Λ and the inverse Darcy number Da −1 is to delay the onset of Darcy–Brinkman electroconvection. Besides, increasing R ea and Da −1 as well as decreasing Λ are to reduce the size of convection cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({a=\sqrt{\ell^{2}+m^{2}}}\) :

Overall horizontal wave number

d :

Thickness of the porous layer

D = d/dz :

Differential operator

Da = k/d 2 :

Darcy number

\({\vec{E}}\) :

Electric field

\({\vec{g}}\) :

Acceleration due to gravity

\({\hat{{k}}}\) :

Unit vector in z-direction

k :

Permeability of the porous medium

, m :

Wave numbers in the x and y directions

M :

Ratio of heat capacities

p :

Pressure

\({Pr=\nu\phi/\kappa}\) :

Prandtl number

\({\vec{q}=(u,v,w)}\) :

Velocity vector

\({R_{\rm ea} =\eta^{2}\varepsilon_0 E_0^2(\Delta T)^{2}d^{2}/\mu\kappa}\) :

AC electric Rayleigh number

R eaD (= R ea Da):

AC electric Darcy–Rayleigh number

R t = α gΔT d 3/νκ :

Thermal Rayleigh number

R tD (= R t Da):

Thermal Darcy–Rayleigh number

t :

Time

T :

Temperature

T 0 :

Temperature of the lower boundary

T 1 :

Temperature of the upper boundary

V :

Electric potential

W :

Amplitude of vertical component of perturbed velocity

(x, y, z):

Cartesian co-ordinates

α :

Thermal expansion coefficient

\({\nabla^{2}=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}+\partial^{2}/\partial z^{2}}\) :

Laplacian operator

\({\nabla_h^2 =\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}}\) :

Horizontal Laplacian operator

ΔT = T 0T 1 :

Temperature difference between the lower upper boundaries

ε :

Dielectric constant

η :

Thermal expansion coefficient of dielectric constant

κ :

Effective thermal diffusivity of the fluid

\({\Lambda =\tilde{\mu}/\mu}\) :

Ratio of viscosities

μ :

Dynamic viscosity of the fluid

\({\tilde{\mu}}\) :

Effective viscosity

νμ/ρ 0 :

Kinematic viscosity

\({\phi}\) :

Porosity of the porous medium

Φ:

Amplitude of perturbed electric potential

ρ :

Fluid density

ρ e :

Free charge density

ρ 0 :

Reference density at T 0

Θ:

Amplitude of perturbed temperature

σ :

Electrical conductivity

ωω r i ω i :

Growth rate

b:

Basic state

c:

Critical

f:

Fluid

s:

Solid

References

  • Alchaar S., Vasseur P., Bilgen E.: Effect of a magnetic field on the onset of convection in a porous medium. Heat Mass Transf. 30, 259–267 (1995)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1988)

    Google Scholar 

  • Bejan, A., Dincer, I., Lorente, S., Miquel, A.F., Reis, A.H. (eds): Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)

    Google Scholar 

  • Bhadauria B.S.: Combined effect of temperature modulation and magnetic field on the onset of convection in an electrically conducting-fluid-saturated porous medium. ASME J. Heat Transf. 130, 052601–052609 (2008)

    Article  Google Scholar 

  • Bhatta D., Muddamallappa M.S., Riahi D.N.: On perturbation and marginal stability analysis of magneto-convection in active mushy layer. Transp. Porous Med. 82, 385–399 (2010)

    Article  Google Scholar 

  • Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    Google Scholar 

  • Char M.I., Chiang K.T.: Boundary effects on the Bénard-Marangoni instability under an electric field. Appl. Sci. Res. 52, 331–354 (1994)

    Article  Google Scholar 

  • del Río J.A., Whitaker S.: Electrohydrodynamics in porous media. Transp. Porous Med. 44, 385–405 (2001)

    Article  Google Scholar 

  • Douiebe A., Hannaoui M., Lebon G., Benaboud A., Khmou A.: Effects of a.c. electric field and rotation on Bénard-Marangoni convection. Flow Turbul. Combust. 67, 185–204 (2001)

    Article  Google Scholar 

  • El-Sayed M.F.: Onset of electroconvective instability of Oldroydian viscoelastic liquid layer in Brinkman porous medium. Arch. Appl. Mech. 78, 211–224 (2008)

    Article  Google Scholar 

  • El-Sayed M.F., Moatimid G.M., Metwaly T.M.N.: Nonlinear electrohydrodynamic stability of two superposed streaming finite dielectric fluids in porous medium with interfacial surface charges. Transp. Porous Med. 86, 559–578 (2011)

    Article  Google Scholar 

  • Finlayson B.A.: The Method of Weighted Residuals and Variational Principles. Academic Press, New York (1972)

    Google Scholar 

  • Givler R.C., Altobelli S.A.: Determination of the effective viscosity for the Brinkman-Forchheimer flow model. J. Fluid Mech. 258, 355–361 (1994)

    Article  Google Scholar 

  • Horton C.W., Rogers G.T.: Convection current in a porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  Google Scholar 

  • Ingham, D.B., Pop, I. (eds): Transport Phenomena in Porous Media. Pergamon, Oxford (1998)

    Google Scholar 

  • Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds): Emerging Technologies and Techniques in Porous Media. Kluwer, Dordrecht (2004)

    Google Scholar 

  • Jones, T.B.: Electrohydrodynamically enhanced heat transfer in liquids—a review. In: Irvine, T.F., Jr.,Hartnett, J.P. (eds.) Advances in Heat Transfer, pp. 107–144. Academic Press, New York (1978)

    Google Scholar 

  • Kaviany M.: Principles of Heat Transfer in Porous Media. 2nd edn. Springer-Verlag, New York (1995)

    Book  Google Scholar 

  • Lai F.C., Lai K.W.: EHD-enhanced drying with wire electrode. Drying Technol. 20, 1393–1405 (2002)

    Article  Google Scholar 

  • Landau L.D., Lifshitz E.M.: Electrodynamics of Continuous Media: Course of Theoretical Physics, 8. Pergamon Press, London (1988)

    Google Scholar 

  • Lapwood E.R.: Convection of a fluid in a porous medium. Proc. Camb. Philos. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Maekawa T., Abe K., Tanasawa I.: Onset of natural convection under an electric field. Int. J. Heat Mass Transf. 35, 613–621 (1992)

    Article  Google Scholar 

  • Moreno, R.Z., Bonet, E.J., Trevisan, O.V.: Electric alternating current effects on flow of oil and water in porous media. In: Vafai, K., Shivakumar, P.N. (eds.) Proceedings of the International Conference on Porous Media and Their Applications in Science, Engineering and Industry, Hawaii, pp. 147–172 (1996)

  • Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer-Verlag, New York (2006)

    Google Scholar 

  • Othman M.I.: Electrohydrodynamic instability of a rotating layer of a viscoelastic fluid heated from below. ZAMP 55, 468–482 (2004)

    Article  Google Scholar 

  • Othman M.I.A., Zaki S.A.: The effect of thermal relaxation time on a electrohydrodynamic viscoelastic fluid layer heated from below. Can. J. Phys. 81, 779–787 (2003)

    Article  Google Scholar 

  • Patil R.P., Rudraiah N.: Stability of hydromagnetic thermoconvective flow through porous medium. ASME J. Appl. Mech. 40, 879–884 (1973)

    Article  Google Scholar 

  • Rees D.A.S.: The stability of Darcy-Bénard convection. In: Vafai, K. (eds) Handbook of Porous Media, pp. 521–558. Marcel Dekker, New York (2000)

    Chapter  Google Scholar 

  • Rudraiah N.: Linear and non-linear magnetoconvection in a porous medium. Proc. Indian Acad. Sci. 93, 117–135 (1984)

    Article  Google Scholar 

  • Rudraiah N., Gayathri M.S.: Effect of thermal modulation on the onset of electrothermoconvection in a dielectric fluid saturated porous medium. ASME J. Heat Transf. 131, 101009–101015 (2009)

    Article  Google Scholar 

  • Rudraiah N., Vortmeyer D.: Stability of finite-amplitude and overstable convection of a conducting fluid through porous bed. Warme und Stoff ubertragen 11, 241–254 (1978)

    Article  Google Scholar 

  • Roberts P.H.: Electrohydrodynamic convection. Q. J. Mech. Appl. Math. 22, 211–220 (1969)

    Article  Google Scholar 

  • Saville D.A.: Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 27–64 (1997)

    Article  Google Scholar 

  • Shivakumara, I.S., Venkatachalappa, M. (eds): Convection 3-II, A Series on Collected Works of Prof. N. Rudraiah. Tata McGraw-Hill, New Delhi (2004)

    Google Scholar 

  • Shivakumara I.S., Nagashree M.S., Hemalatha K.: Electroconvective instability in a heat generating dielectric fluid layer. Int. Commun. Heat Mass Transf. 34, 1041–1047 (2007)

    Article  Google Scholar 

  • Shivakumara I.S., Rudraiah N., Hemalatha K.: Electrothermoconvection in a dielectric fluid layer in the presence of heat generation. Int. J. Appl. Math. 1, 87–101 (2009)

    Google Scholar 

  • Stratton J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    Google Scholar 

  • Takashima T., Aldridge K.D.: The stability of a horizontal layer of dielectric fluid under the simultaneous action of a vertical d.c. electric field and vertical temperature gradient. Q. J. Mech. Appl. Math. 29, 71–87 (1976)

    Article  Google Scholar 

  • Turnbull R.J.: Electroconvective instability with a stabilizing temperature gradient. I: Theory. Phys. Fluids 11, 2588–2596 (1968a)

    Article  Google Scholar 

  • Turnbull R.J.: Electroconvective instability with a stabilizing temperature gradient. II: Experimental Results. Phys. Fluids 11, 2596–2603 (1968b)

    Google Scholar 

  • Turnbull R.J.: Effect of dielectrophoretic forces on the Bénard instability. Phys. Fluids 12, 1809–1815 (1969)

    Article  Google Scholar 

  • Turnbull R.J., Melcher J.R.: Electrodynamic Rayleigh-Taylor bulk instability. Phys. Fluids 12, 1160–1166 (1969)

    Article  Google Scholar 

  • Tyvand P.A.: Onset of Rayleigh-Bénard convection in porous bodies. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media II, pp. 82–112. Elsevier, Oxford (2002)

    Chapter  Google Scholar 

  • Vafai, K. (eds): Handbook of Porous Media. Marcel Dekker, New York (2000)

    Google Scholar 

  • Vafai, K. (eds): Handbook of Porous Media. 2nd edn. Taylor and Francis (CRC), Boca Raton (2005)

    Google Scholar 

  • Yabe A., Mori Y., Hijikata K.: Active heat transfer enhancement by utilizing electric fields. Ann. Rev. Heat Transf. 7, 193–244 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivakumara, I.S., Rudraiah, N., Lee, J. et al. The Onset of Darcy–Brinkman Electroconvection in a Dielectric Fluid Saturated Porous Layer. Transp Porous Med 90, 509–528 (2011). https://doi.org/10.1007/s11242-011-9797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9797-7

Keywords

Navigation