Skip to main content
Log in

Porous Medium Modeling of Air-Cooled Condensers

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This article presents a porous media transport approach to model the performance of an air-cooled condenser. The finned tube bundles in the condenser are represented by a porous matrix, which is defined by its porosity, permeability, and the form drag coefficient. The porosity is equal to the tube bundle volumetric void fraction and the permeability is calculated by using the Karman–Cozney correlation. The drag coefficient is found to be a function of the porosity, with little sensitivity to the way this porosity is achieved, i.e., with different fin size or spacing. The functional form was established by analyzing a relatively wide range of tube bundle size and topologies. For each individual tube bundle configuration, the drag coefficient was selected by trial and error so as to make the pressure drop from the porous medium approach match the pressure drop calculated by the heat exchanger design software ASPEN B-JAC. The latter is a well-established commercial heat exchanger design program that calculates the pressure drop by using empirical formulae based on the tube bundle properties. A close correlation is found between the form drag coefficient and the porosity with the drag coefficient decreasing with increasing porosity. A second order polynomial is found to be adequate to represent this relationship. Heat transfer and second law (of thermodynamics) performance of the system has also been investigated. The volume-averaged thermal energy equation is able to accurately predict the hot spots. It has also been observed that the average dimensionless wall temperature is a parabolic function of the form drag coefficient. The results are found to be in good agreement with those available in the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Flow cross-sectional area, m2

C F :

Form drag coefficient

c p :

Specific heat at constant pressure (of fluid), J/Kg K

d :

Diameter, m

e p :

Normalized excess pressure drop because of fins

e q :

Normalized heat transfer enhancement because of fins

k :

Turbulent kinetic energy per unit mass, (m/s)2

K :

Permeability, m2

L :

Tube length, m

\({\dot {m}}\) :

Mass flow rate, Kg/s

N :

Number

p :

Pressure, Pa

P * :

Pressure gradient, Pa/m

Q :

Total heat transfer rate, W

q b :

Volumetric heat generation rate, W/m3

Ns :

Entropy generation number

Pr T :

Turbulent Prandtl number

Re K :

Reynolds number with K 1/2 as the length scale, Re K  = V K 1/2/υ

S :

Tube pitch, m

\({\dot {S}_{\rm gen}}\) :

Entropy generation rate, W/K

\({S_\phi}\) :

Source term for \({\phi}\) equation

t :

Fin thickness, m

T :

Temperature, K

u :

x-Velocity, m/s

v :

y-Velocity, m/s

V :

Face velocity, m/s

x :

Horizontal coordinate, m

y :

Vertical coordinate, m

α :

Effective thermal diffusivity of the fluid/porous medium, m2/s

ε :

Dissipation rate of turbulent kinetic energy, m2/s3

\({\Gamma_\phi}\) :

Diffusion parameter for \({\phi}\) equation, m2/s

θ :

Dimensionless temperature

ρ :

Fluid density, Kg/m3

υ :

Kinematic viscosity, m2/s

\({\phi}\) :

Generic variable

φ :

Porosity

ave:

Average

b:

Bundle

eff:

Effective

f:

Fin

in:

Inlet

m:

Mean

out:

Outlet

ref:

Of reference temperature

t:

Tube

T:

Turbulent

w:

Wall

x, y:

In x, y direction

References

  • Antohe B.V., Lage J.L.: A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transf. 40(13), 3013–3024 (1997)

    Article  Google Scholar 

  • Bejan A.: Entropy Generation Through Heat and Fluid Flow. Wiley, New York (1992)

    Google Scholar 

  • Bejan A., Morega A.M.: Optimal arrays of pin fins and plate fins in laminar forced-convection. J. Heat Transf.-Trans. ASME 115(1), 75–81 (1993)

    Article  Google Scholar 

  • Bejan A., Dincer I., Lorenteh S., Miguel A.F., Reis A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)

    Google Scholar 

  • Bilen K., Akyol U., Yapici S.: Thermal performance analysis of a tube finned surface. Int. J. Energy Res. 26(4), 321–333 (2002)

    Article  Google Scholar 

  • de Lemos M.J.S.: Turbulence in Porous Media: Modeling and Applications. Elsevier Science, Oxford (2006)

    Google Scholar 

  • Do K.H., Min J.Y., Kim S.J.: Thermal optimization of an internally finned tube using analytical solutions based on a porous medium approach. J. Heat Transf.-Trans. ASME 129(10), 1408–1416 (2007)

    Article  Google Scholar 

  • Ejlali, A., Hooman, K.: A comparative study on dry cooling of different working fluids for geothermal applications. In: Gurgenci, H., Budd, A. (eds.) Australian Geothermal Energy Conference. Melbourne, Australia (2008)

  • Fisher T.S., Torrance K.E.: Free convection limits for pin-fin cooling. J. Heat Transf.-Trans. ASME 120(3), 633–640 (1998)

    Article  Google Scholar 

  • Hooman K.: Entropy generation for microscale forced convection: Effects of different thermal boundary conditions, velocity slip, temperature jump viscous dissipation, and duct geometry. Int. Commun. Heat Mass Transf. 34(8), 945–957 (2007)

    Article  Google Scholar 

  • Hooman K., Haji-Sheikh A.: Analysis of heat transfer and entropy generation for a thermally developing Brinkman–Brinkman forced convection problem in a rectangular duct with isoflux walls. Int. J. Heat Mass Transf. 50(21–22), 4180–4194 (2007)

    Article  Google Scholar 

  • Hooman K., Hooman F., Mohebpour S.R.: Entropy generation for forced convection in a porous channel with isoflux or isothermal walls. Int. J. Energy 5(1), 78–96 (2008)

    Google Scholar 

  • Hooman, K., Gurgenci, H.: Air cooled porous matrix heat exchangers for geothermal applications. In: Gurgenci, H., Budd, A. (eds.) Australian Geothermal Energy Conference. Melbourne, Australia (2008)

  • Hooman K., Gurgenci H., Merrikh A.A.: Heat transfer and entropy generation optimization of forced convection in porous-saturated ducts of rectangular cross-section. Int. J. Heat Mass Transf. 50(11–12), 2051–2059 (2007)

    Article  Google Scholar 

  • Joseph D.D., Nield D.A., Papanicolaou G.: Non-linear equation governing flow in a saturated porous-medium. Water Resour. Res. 18(4), 1049–1052 (1982)

    Article  Google Scholar 

  • Kays W.M., London A.L.: Compact Heat Exchangers. 3rd edn. McGraw-Hill, Sydney (1984)

    Google Scholar 

  • Kim S.J., Kim D.: Forced convection in microstructures for electronic equipment cooling. J. Heat Transf.-Trans. ASME 121(3), 639–645 (1999)

    Article  Google Scholar 

  • Kim, T., Lu, T.J.: Pressure drop through anisotropic porous medium like cylinder bundles in turbulent flow regime. J. Fluids Eng.-Trans. ASME 130(10), article # 104501 (2008)

  • Kim S.J., Yoo J.W., Jang S.P.: Thermal optimization of a circular-sectored finned tube using a porous medium approach. J. Heat Transf.-Trans. ASME 124(6), 1026–1033 (2002)

    Article  Google Scholar 

  • Lage J.L.: The fundamental theory of flow through permeable media from Darcy to turbulence. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media, Pergamon, Oxford (1998)

    Google Scholar 

  • Lage J.L., Antohe B.V.: Darcy’s experiments and the deviation to nonlinear flow regime. J. Fluids Eng.-Trans. ASME 122(3), 619–625 (2000)

    Article  Google Scholar 

  • Lage J.L., Antohe B.V., Nield D.A.: Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media. J. Fluids Eng.-Trans. ASME 119(3), 700–706 (1997)

    Article  Google Scholar 

  • Mahjoob S., Vafai K.: A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int. J. Heat Mass Transf. 51, 3701–3711 (2008)

    Article  Google Scholar 

  • Merrikh A.A., Lage J.L., Mohamad A.A.: Natural convection in nonhomogeneous heat-generating media: Comparison of continuum and porous-continuum models. J. Porous Media 8(2), 149–163 (2005)

    Article  Google Scholar 

  • Miguel A.F.: Airflow through porous screens: from theory to practical considerations. Energy Buildings 28(1), 63–69 (1998)

    Article  Google Scholar 

  • Morega A.M., Bejan A., Lee S.W.: Free-stream cooling of a parallel plates. Int. J. Heat Mass Transf. 38(3), 519–531 (1995)

    Article  Google Scholar 

  • Nakayama A., Kuwahara F.: A macroscopic turbulence model for flow in a porous medium. J. Fluids Eng.-Trans. ASME 121(2), 427–433 (1999)

    Article  Google Scholar 

  • Nield D.A.: Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: Forced convection in a channel. J. Porous Media 1(2), 181–186 (1998)

    Google Scholar 

  • Nield D.A.: Alternative models of turbulence in a porous medium, and related matters. J. Fluids Eng.-Trans. ASME 123(4), 928–931 (2001)

    Article  Google Scholar 

  • Nield D.A.: Modelling fluid flow in saturated porous media and at interfaces. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media II, Elsevier Science, Oxford (2002)

    Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Patankar S.V., Spalding D.B.: A calculation procedure for the transient and steady-state behavior of shell-and-tube heat exchanger. In: Afgan, N., Schlünder, E.U. (eds) Heat Exchangers: Design and Theory Sourcebook, Scripta Book Company, Washington (1974)

    Google Scholar 

  • Qu W.L., Mudawar I.: Analysis of three-dimensional heat transfer in micro-channel heat sinks. Int. J. Heat Mass Transf. 45(19), 3973–3985 (2002a)

    Article  Google Scholar 

  • Qu W.L., Mudawar I.: Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf. 45(12), 2549–2565 (2002b)

    Article  Google Scholar 

  • Sasaguchi K., Takeo H.: Effect of the orientation of a finned surface on the melting of frozen porous-media. Int. J. Heat Mass Transf. 37(1), 13–26 (1994)

    Article  Google Scholar 

  • Stanescu G., Fowler A.J., Bejan A.: The optimal spacing of cylinders in free-stream cross-flow forced convection. Int. J. Heat Mass Transf. 39(2), 311–317 (1996)

    Article  Google Scholar 

  • Vafai K., Tien C.L.: Boundary and inertia effects on flow and heat-transfer in porous-media. Int. J. Heat Mass Transf. 24(2), 195–203 (1981)

    Article  Google Scholar 

  • Vassallo, P., Symolon, P.: Friction factor measurements in an equally spaced triangular array of circular tubes. J. Fluids Eng.-Trans. ASME 130(4), article # 041105 (2008)

  • Whitaker S.: The Method of Volume Averaging. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hooman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooman, K., Gurgenci, H. Porous Medium Modeling of Air-Cooled Condensers. Transp Porous Med 84, 257–273 (2010). https://doi.org/10.1007/s11242-009-9497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9497-8

Keywords

Navigation