Skip to main content
Log in

Numerical modeling of the thermal–hydraulic behavior of wire-on-tube condensers operating with HFC-134a using homogeneous equilibrium model: evaluation of some void fraction correlations

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study presents a numerical evaluation of the influence of some void fraction correlations over the thermal–hydraulic behavior of wire-on-tube condensers operating with HFC-134a. The numerical model is based on finite volume method considering the homogeneous equilibrium model. Empirical correlations are applied to provide closure relations. Results show that the choice of void fraction correlation influences the refrigerant charge and pressure drop calculations, while no influences the heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Cross sectional area (m2)

D :

Tube diameter (m)

f :

Friction factor

G :

Refrigerant mass velocity (kg/m2 s)

h :

Specific refrigerant enthalpy (J/kg)

H :

Height (m)

k :

Thermal conductivity (W/m K)

L :

Length (m)

M:

Total number of nodes

P :

Refrigerant pressure (Pa)

\(Q^{\prime \prime }\) :

Heat flux (W/m2)

s :

Normalized spacing

T :

Temperature (°C)

u :

Refrigerant velocity (m/s)

x :

Refrigerant quality

z :

Node position (m)

Z :

Constant parameter

α :

Void fraction

β :

Volumetric thermal expansivity (K−1)

δ :

Spacing (m)

Δ:

Node spacing

ω :

Dimensionless temperature

ζ :

Dimensionless geometrical parameter

\(\varepsilon\) :

Emissivity

ɛ t :

Tube absolute roughness (m)

\(\hbar\) :

Heat transfer coefficient (W/m2 K)

\(\eta\) :

Efficiency

ρ :

Density (kg/m3)

μ :

Absolute viscosity (Pa s)

ν :

Kinematic viscosity (m2/s)

σ :

Stefan–Boltzmann constant (W/m2 K4)

τ :

Shear stress (Pa)

Pr:

Prandtl number

\(Ra_{{H_{c} }}\) :

Rayleigh number based on the condenser height

\(Ra_{{L_{d} }}\) :

Rayleigh number base on the discharge line length

\(\text{Re}_{{D_{i} }}\) :

Reynolds number for single-phase flow

\(\text{Re}_{v}\) :

Reynolds number for two-phase flow

Xtt :

Lockhart–Martinelli parameter

a :

Air

c :

Condenser

d :

Discharge line

ext :

External

eq :

Equivalent

f :

Fin

h:

Homogeneous

k :

Node index

i :

Internal

l :

Saturated liquid

r :

Radiation

t :

Tube

v :

Saturated vapor

\(w\) :

Wall

References

  1. Quadir GA, Krishnan GM, Seetharamu KN (2002) Modeling of wire-on-tube heat exchangers using finite element method. Finite Elem Anal Des 38:417–434

    Article  MATH  Google Scholar 

  2. Ameen A, Mollik SA, Mahmud K, Quadir GA, Seetharamu KN (2006) Numerical analysis and experimental investigation into the performance of a wire-on-tube condenser of a retrofitted refrigerator. Int J Refrig 29:495–504

    Article  Google Scholar 

  3. Guzella MS, Maia CB, Hanriot SM, Cabezas-Gómez L (2013) A comparison between two numerical models to describe the thermal–fluid behavior of wire-on-tube condensers. In: Proceedings of the 22nd international congress of mechanical engineering, Ribeirão Preto, pp 5892–5901

  4. Hermes CJL, Melo C (2008) A first-principles simulation model for the start-up and cycling transients of household refrigerators. Int J Refrig 31:1341–1357

    Article  Google Scholar 

  5. Gonçalves JM, Melo C, Hermes CJL (2009) A semi-empirical model for steady-state simulation of household refrigerators. Appl Therm Eng 29:1622–1630

    Article  Google Scholar 

  6. Xu X, Clodic D (1996) Dynamic simulation model of a vapor compression domestic refrigerator running with R134a. In: Proceedings of international refrigeration and air conditioning conference, West Lafayette, USA

  7. Zivi SM (1964) Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. Transa ASME J Heat Transf 86:247–252

    Article  Google Scholar 

  8. Klein FH (1998) Development of a computational code for analysis of the performance of domestic refrigerators. M.Sc. thesis, Federal University of Santa Catarina, Santa Catarina, Brazil (in Portuguese)

  9. Hermes CJL (2000) Development of mathematical models for numerical simulations of household refrigerators in transient regime, MSc. Dissertation, Federal University of Santa Catarina, Brazil (in Portuguese)

  10. Rice CK (1987) The effect of void fraction correlation and heat flux assumption on refrigerant charge inventory predictions. ASHRAE Trans 93(1):341–367

    Google Scholar 

  11. Thom JRS (1964) Prediction of pressure drop during forced circulation boiling of water. Int J Heat Mass Transf 7:709–724

    Article  Google Scholar 

  12. Smith SL (1969) Void fractions in two-phase flow: a correlation based upon an equal velocity head model. Proc Inst Mech Eng 36:647–664

    Article  Google Scholar 

  13. Premoli A, Francesco DD, Prina A (1971) A dimensional correlation for evaluating two-phase mixture density. La Termotecnica 25(1):17–26

    Google Scholar 

  14. Lockhart RW, Martinelli RC (1949) Proposed correlation data for isothermal two-phase two-component flow in pipes. Chem Eng Prog 45(1):39–48

    Google Scholar 

  15. Baroczy CJ (1965) Correlation of liquid fraction in two-phase flow with applications to liquid metals. Chem Eng Prog Symp Ser 61:179–191

    Google Scholar 

  16. Tandon TN, Varma HK, Gupta CP (1985) A void fraction model for annular two-phase flow. Int J Heat Mass Transf 28(1):191–198

    Article  MATH  Google Scholar 

  17. Hughmark GA (1962) Holdup in gas-liquid flow. Chem Eng Prog 58(4):62–65

    Google Scholar 

  18. Rigot G (1973) Fluid capacity of an evaporator in direct expansion. Chaud-Froid-Plomberie 328:133–144

    Google Scholar 

  19. Farzad M, O’Neal DL (1994) The effect of void fraction model on estimation of air conditioner system performance variables under a range of refrigerant charging conditions. Int J Refrig 17:85–93

    Article  Google Scholar 

  20. Xu Y, Fang X (2014) Correlations of void fraction for two-phase refrigerant flow pipes. Appl Therm Eng 64:242–251

    Article  Google Scholar 

  21. Milián V, Navarro-Esbrí J, Ginestar D, Molés F, Peris B (2014) Dynamic model of a shell-and-tube condenser. Analysis of the mean void fraction correlation influence on the model performance. Energy 59:521–533

    Article  Google Scholar 

  22. Domanski P, Didion D (1983) Computer modeling of the vapor compression cycle with constant flow area expansion device. NBS Build Sci Ser 155:167

    Google Scholar 

  23. Steiner D (1993) Heat transfer to boiling saturated liquids. VDI-Warmeatlas. VDI Heat Atlas, Düsseldorf

  24. Steward HB, Wendroff B (1984) Two-phase flow: models and methods. J Comput Phys 56:363–409

    Article  MathSciNet  Google Scholar 

  25. Patankar SV (1980) Numerical heat transfer and fluid flow. TaylorFrancis, New York

    MATH  Google Scholar 

  26. Churchill SW (1977) Friction factor equation spans all fluid flow regimes. Chem Eng 7:91–92

    Google Scholar 

  27. Cicchitti A, Lombardi C, Silvestri M, Soldaini G, Zavatarelli R (1960) Two-phase cooling experiments—pressure drop, heat transfer and burnout measurements. Energia Nucleare 7:407–425

    Google Scholar 

  28. Dittus FW, Boelter LMK (1930) Heat transfer in automobile radiators of tubular type. Int Commun Heat Mass Transf 12:3–22

    Article  Google Scholar 

  29. Shao DW, Granryd E (1995) Heat transfer and pressure drop of oil mixtures in a horizontal condensing tube. Int J Refrig 18:524–533

    Article  Google Scholar 

  30. Lefreve EJ, Ede AJ (1956) Laminar free convection from the outer surface of a vertical circular cylinder. In: Proceeding of the 9th international congress of applied mechanics, Brussels, Belgium, pp 175–183

  31. Tanda DW, Tagliafico L (1995) Radiation and natural convection heat transfer from wire-and-tube heat exchangers in refrigeration appliances. Int J Refrig 20:461–469

    Google Scholar 

  32. Klein SA (2004) Engineering Equation Solver (EES®), v. 7.187-3D, F-Chart Software, Madison, USA

  33. Bankoff SG (1960) A variable density single-fluid model for two-phase flow with particular reference to steam-water flow. Trans ASME J Heat Transf 82:265–272

    Article  Google Scholar 

  34. Rouhani SZ, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Transf 13:383–393

    Article  Google Scholar 

  35. Gonçalves JM, Melo C (2004) Experimental and numerical steady-state analysis of a top-mount refrigerator. In: Proceedings of international refrigeration and air conditioning conference, West Lafayette, USA

Download references

Acknowledgments

The authors are grateful for the financial support provided by CAPES, specially the first author for a scholarship during 2012–2013. Authors are also grateful to the support provided by CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luben Cabezas-Gómez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzella, M.S., Cabezas-Gómez, L., da Silva, J.A. et al. Numerical modeling of the thermal–hydraulic behavior of wire-on-tube condensers operating with HFC-134a using homogeneous equilibrium model: evaluation of some void fraction correlations. Heat Mass Transfer 52, 183–195 (2016). https://doi.org/10.1007/s00231-015-1543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1543-1

Keywords

Navigation