Skip to main content
Log in

On the Equivalence of the Discontinuous One- and Two-Domain Approaches for the Modeling of Transport Phenomena at a Fluid/Porous Interface

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In the quest (i) to determine the form of the boundary conditions that must be applied at a fluid/porous interface and (ii) to determine the value of the jump parameters that appear in the expression for these boundary conditions, two different approaches are commonly considered: the so-called one-domain and two-domain approaches. These approaches are commonly thought to be different, and they are thus sometimes compared to each other to determine the value of jump parameters. In this article, we show that the two-domain and discontinuous one-domain approaches are actually strictly equivalent, provided that the latter is mathematically interpreted in the sense of distributions. This equivalence is shown in details for a heat conduction problem and for the more classical Darcy-Brinkman problem. We show in particular that interfacial jumps are introduced in the discontinuous one-domain approach through Dirac delta functions. Numerical issues are then discussed that show that subtle discretization truncation errors give rise to large variations that can be mis-interpreted as the sign of the existence of jump parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beavers G., Joseph D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  • Breugem W.-P., Boersma B.J., Uittenbogaard R.E.: The laminar boundary layer over a permeable wall. Transp. Porous Media 59(3), 267–300 (2005). doi:10.1007/s11242-004-2557-1

    Article  Google Scholar 

  • Carr M.: Penetrative convection in a superposed porous-medium-fluid layer via internal heating. J. Fluid Mech. 509, 305–329 (2004)

    Article  Google Scholar 

  • Carr M., Straughan B.: Penetrative convection in a fluid overlying a porous layer. Adv. Water Res. 26, 263–276 (2003)

    Article  Google Scholar 

  • Chandesris, M.: Modélisation des écoulements turbulents dans les milieux poreux et à l’interface avec un milieu libre. Thèse de doctorat, Université Paris VI (2006)

  • Chandesris M., Jamet D.: Boundary conditions at a fluid–porous interface: An a priori estimation of the stress jump coefficients. Int. J. Heat Mass Transf. 50(17–18), 3422–3436 (2007). doi:10.1016/j.ijheatmasstransfer.2007.01.053

    Article  Google Scholar 

  • Chandesris, M., Jamet, D.: Jump conditions and surface-excess quantities at a fluid/porous interface: A multi-scale approach. Transp. Porous Media (2009). doi:10.1007/s11242-008-9302-0

  • Chen F., Chen C.F.: Onset of finger convection in a horizontal porous layer underlying a fluid layer. J. Heat Transf. 110, 403–409 (1988)

    Article  Google Scholar 

  • Cotta R.M.: Integral Transforms in Computational Heat and Fluid Flow. CRC, Boca Raton, FL (1993)

    Google Scholar 

  • Deng C., Martinez D.M.: Viscous flow in a channel partially filled with a porous medium and with wall suction. Chem. Eng. Sci. 60(2), 329–336 (2005). doi:10.1016/j.ces.2004.08.010

    Article  Google Scholar 

  • Fedkiw R., Aslam T., Merriman B., Osher S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (The Ghost Fluid Method). J. Compd. Phys. 152, 457–492 (1999)

    Article  Google Scholar 

  • Goyeau B., Lhuillier D., Gobin D., Velarde M.G.: Momentum transport at a fluid–porous interface. Int. J. Heat Mass Transf. 46, 4071–4081 (2003). doi:10.1016/S0017-9310(03)00241-2

    Article  Google Scholar 

  • Hirata S.C., Goyeau B., Gobin D.: Stability of natural convection in superposed fluid and porous layer: Influence of the interfacial jump boundary condition. Phys. Fluids 19, 058102 (2007)

    Article  Google Scholar 

  • Hirata S.C., Goyeau B., Gobin D., Chandesris M., Jamet D.: Stability of natural convection in superposed fluid and porous layer: Equivalence of the one- and two-domain approaches. Int. J. Heat Mass Transf. 52(1–2), 533–536 (2009). doi:10.1016/j.ijheatmasstransfer.2008.07.045

    Article  Google Scholar 

  • Kataoka I.: Local instant formulation of two-phase flow. Int. J. Multiph. Flow 12(5), 745–758 (1986)

    Article  Google Scholar 

  • Nield D.A.: Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech. 81, 513–522 (1977)

    Article  Google Scholar 

  • Nield D.A.: The boundary correction for the Rayleigh-Darcy problem: Limitations of the Brinkman equation. J. Fluid Mech. 128, 37–46 (1983)

    Article  Google Scholar 

  • Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I. Theoretical development. Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995). doi:10.1016/0017-9310(94)00346-W

    Article  Google Scholar 

  • Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Hermann (1965)

  • Silva R.A., de Lemos M.J.S.: Numerical analysis of the stress jump interface condition for laminar flow over a porous layer. Numer. Heat Transf. Part A 43(6), 603–617 (2003a)

    Article  Google Scholar 

  • Silva R.A., de Lemos M.J.S.: Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transf. 46, 5113–5121 (2003b)

    Article  Google Scholar 

  • Valdès-Parada F.J., Goyeau B., Ochoa-Tapia J.A.: Diffusive mass transfer between a microporous medium and an homogeneous fluid: Jump boundary conditions. Chem. Eng. Sci. 61(5), 1692–1704 (2006). doi:10.1016/j.ces.2005.10.005

    Article  Google Scholar 

  • Zhao P., Chen C.F.: Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model. Int. J. Heat Mass Transf. 44, 4625–4633 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jamet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamet, D., Chandesris, M. & Goyeau, B. On the Equivalence of the Discontinuous One- and Two-Domain Approaches for the Modeling of Transport Phenomena at a Fluid/Porous Interface. Transp Porous Med 78, 403–418 (2009). https://doi.org/10.1007/s11242-008-9314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-008-9314-9

Keywords

Navigation