Skip to main content
Log in

Optimized protoplast isolation and establishment of transient gene expression system for the Antarctic flowering plant Colobanthus quitensis (Kunth) Bartl.

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Colobanthus quitensis is one of two terrestrial plants that grow in the maritime Antarctic. Despite its important ecological niche in extreme environments, the molecular mechanisms of its adaptation and tolerance have not been elucidated due to difficulties with genetic or transgenic approaches. For this reason, in many other plant species mesophyll protoplasts as a versatile cell-based system have been developed and used to analyze the biological functions of genes of interest. Here we report an optimized method of protoplast isolation from C. quitensis leaves. The main parameters evaluated to reach the highest protoplast yield were the use of a cell wall-degrading enzyme, an osmotic stabilizer, and different pH conditions. Moreover, transient expression and subcellular localization of proteins were validated by an immunoblot assay and a confocal microscopy, respectively, using C. quitensis protoplasts. Therefore, these results suggest that protoplasts can provide a useful cell-based system to facilitate the molecular, biochemical, and cellular characterizations of C. quitensis genes.

Key message

C. quitensis protoplasts can provide a physiologically relevant cell system to facilitate the molecular, biochemical, and cellular characterization of C. quitensis genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

All sequence information of C. quitensis orthologous genes used in this study were submitted to GenBank under accession numbers MH0033823–MH0033828. All data are stored at Korea Polar Data Center (KPDC; http://kpdc.kopri.re.kr).

References

  • Androsiuk P, Jastrzębski JP, Paukszto Ł, Okorski A, Pszczółkowska A, Chwedorzewska KJ, Koc J, Górecki R, Giełwanowska I (2018) The complete chloroplast genome of Colobanthus apetalus (Labill.) Druce: genome organization and comparison with related species. PeerJ 6:e4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Burris KP, Dlugosz EM, Collins AG, Stewart CN Jr, Lenaghan SC (2016) Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep 35:693–704

    Article  CAS  PubMed  Google Scholar 

  • Cavieres LA, Sáez P, Sanhueza C, Sierra-almeida A, Rabert C, Corcuera LJ, Alberdi M, Bravo LA (2016) Ecophysiological traits of Antarctic vascular plants: their importance in the responses to climate change. Plant Ecol 217:343–358

    Article  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Lee H, Jo H, Lee H, Kang Y, Park H, Lee J (2018) Comparative transcriptome analysis of field- and chamber-grown samples of Colobanthus quitensis (Kunth) Bartl, an Antarctic flowering plant. Sci Rep 8:11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuba-Díaz M, Klagges M, Fuentes-Lillo E, Cordero C, Acuña D, Opazo G, Troncoso-Castro JM (2017) Phenotypic variability and genetic differentiation in continental and island populations of Colobanthus quitensis (Caryophyllaceae: Antarctic pearlwort). Polar Biol 40:2397–2409

    Article  Google Scholar 

  • Grundt HH, Kjølner S, Borgen L, Rieseberg LH, Brochmann C (2006) High biological species diversity in the arctic flora. Proc Natl Acad Sci USA 103:972–975

    Article  CAS  PubMed  Google Scholar 

  • Guo WJ, Ho THD (2008) An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol 147:1710–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hachez C, Veljanovski V, Reinhardt H, Guillaumot D, Vanhee C, Chaumont F, Batoko H (2014) The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell 26:4974–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo A, Chen Z, Wang P, Yang L, Wang G, Wang D, Liao S, Cheng T, Chen J, Shi J (2017) Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells. PLoS ONE 12:e0172475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Lee H, Kim MK, Shin SC, Park H, Lee J (2016) The complete chloroplast genome of Antarctic pearlwort Colobanthus quitensis (Kunth) Bartl. Mitochondrial DNA Part A 27:4677–4678

    Article  CAS  Google Scholar 

  • Liu S, Liu C, Huang X, Chai Y, Cong B (2006) Optimization of parameters for isolation of protoplasts from the Antarctic sea ice alga Chlamydomonas sp. ICE-L. J Appl Phycol 18:783–786

    Article  CAS  Google Scholar 

  • Lung S-C, Yanagisawa M, Chuong SDX (2011) Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici. Plant Cell Rep 30:473–484

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Torres E, Dinamarca J, Bravo LA, Corcuera LJ (2004) Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Polar Biol 27:183–189

    Article  Google Scholar 

  • Sáez PL, Bravo LA, Cavieres LA, Vallejos V, Sanhueza C, Font-Carrascosa M, Gil-Pelegrín E, Peguero-Pina JJ, Galmés J (2017) Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters. J Exp Bot 68:2871–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanhueza C, Vallejos V, Cavieres LA, Saez P, Bravo LA, Corcuera LJ (2017) Growing temperature affects seed germination of the antarctic plant Colobanthus quitensis (Kunth) Bartl (Caryophyllaceae). Polar Biol 40:449–455

    Article  Google Scholar 

  • Singh J, Singh RP, Khare R (2018) Influence of climate change on Antarctic flora. Polar Sci 18:94–101

    Article  Google Scholar 

  • Smith RIL (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rocema J, Schorno RML, Van Der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 234–239

    Google Scholar 

  • Wu JZ, Liu Q, Geng XS, Li KM, Luo LJ, Liu JP (2017) Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol 17:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zúñiga G, Zamora P, Ortega M, Obrecht A (2009) Micropropagation of Antarctic Colobanthus quitensis. Antarct Sci 21:149–150

    Article  Google Scholar 

  • Zúñiga-Feest A, Bascuñán-Godoy L, Reyes-Diaz M, Bravo LA, Corcuera LJ (2009) Is survival after ice encasement related with sugar distribution in organs of the Antarctic plants Deschampsia Antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae)? Polar Biol 32:583–591

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Korea Polar Research Institute (PE18290).

Author information

Authors and Affiliations

Authors

Contributions

JL and HL developed concept and supplied plant materials. JL, HSL, and HL designed the research. HL wrote the manuscript and OKC performed all experiments.

Corresponding author

Correspondence to Horim Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by T. Winkelmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, OK., Lee, J., Lee, H.S. et al. Optimized protoplast isolation and establishment of transient gene expression system for the Antarctic flowering plant Colobanthus quitensis (Kunth) Bartl.. Plant Cell Tiss Organ Cult 138, 603–607 (2019). https://doi.org/10.1007/s11240-019-01651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01651-1

Keywords

Navigation