Skip to main content
Log in

Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L.

  • Original Paper
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A previous study had indicated that the transcription factors DREB/CBF (DRE-binding protein/C-repeat binding factor) play important roles in the expression of many stress inducible genes under cold-temperature, dehydration and high-salt conditions. In this study, we have isolated a cDNA clone that encoded a DRE-binding protein from rice cDNA library using the yeast one-hybrid system with DRE cis-acting element in the promoter region of rd29A gene as bait. Sequence analysis of the deduced amino acid sequence showed this protein was a putative AP2/EREBP transcription factor with a conserved AP2/EREBP domain and a potential nuclear localization signal (NLS). Expression pattern studies of this DRE-binding protein revealed that this gene was not only strongly induced by cold-temperature as reported by previous study but also induced by high-temperature as well. For the purpose of analyzing this gene conveniently, we attempted to apply the codon optimization method to reconstruct the gene of transcription factor in plants. A new sequence having decreasing GC contents, secondary structures, optimized codons and identical amino acid sequence with native gene was synthesized, which named OsDREB1BI, and then this optimized gene was transformed into Arabidopsis thaliana cv. Columbia by floral dip method. Results indicated that the OsDREB1BI gene was over-expressed in transgenic plants under cold and high-temperature, meanwhile, those transgenic plants also revealed freezing and heat tolerance. These might lay a strong foundation for exploiting the freezing and heat tolerance of rice and other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  PubMed  CAS  Google Scholar 

  • Batard Y, Hehn A, Nedelkina S, Schalk M, Pallett K, Schaller H, Werck-Reichhart D (2000) Increasing expression of P450 and P450-reductase proteins from monocots in heterologous systems. Arch Biochem Biophys 379:161–169

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Chevray PM, Nathans D (1992) Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci USA 89:5789–5793

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts J, Turner PC, Wilson TMA (1987) A comparison of eukaryotic viral 50-leader sequences as enhancers of mRNA expression in vivo. Nucl Acids Res 15:8693–8711

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (1998) Transcription of yeast by the lithium acetate/single-stranded carrier DNA/PEG method. Methods Microbiol 26:53–66

    CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by the LiAc/SS carrier DNA/PEG method. Meth Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashoe MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcription activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Method Enzymol 101:181–191

    CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol 115:1287

    Article  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol 30:679–684

    Article  PubMed  CAS  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  PubMed  CAS  Google Scholar 

  • Xiong LM, Ishitani M, Zhu JK (1999) Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119:205–212

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  PubMed  CAS  Google Scholar 

  • Peng RH, Huang XM, Li X, Sun AJ, Yao QH, Peng YL (2001) Construction of a plant binary expression vector containing intron-kanamycin gene and transformation in nicotiana tabacum. Acta Phytophysiologica Sinica 27:55–60

    CAS  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003a) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    CAS  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003b) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7:161–167

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour S, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain–containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In Meyerowitz E, Somerville C (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 807–834

    Google Scholar 

  • Wang H, Datla R, Georges F, Loewen M, Cuter AJ (1995) Promoters from Kin1 and cor 6.6, two homologous Arabidopsis thaliana genes: Transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol Biol 28:605–617

    Article  PubMed  CAS  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequence. Nucl Acids Res 32:e98

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Genlou Sun and Dr. Ken Kasha for critical reading of this manuscript. This work was supported by a grant from Jiangsu Natural foundation (BK2003042) and a part from IAEA (12228/RO), the Youth Fund of Shanghai Academy of Agricultural Sciences (2003–13), the National Special Program for Research and Industrialization of Transgenic plants (J00-A-007), the Shanghai Key Basic Research Project (03DJ14016, 03DZ1931) and natural science foundation of China (30370987).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan-hong Yao or Jian-min Chen.

Additional information

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Ql., Liu, Jg., Zhang, Z. et al. Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L.. Mol Breeding 19, 329–340 (2007). https://doi.org/10.1007/s11032-006-9065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9065-7

Keywords

Navigation