Skip to main content
Log in

Effects of ZnO, CuO and γ-Fe3O4 nanoparticles on mature embryo culture of wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In this study, the effects of ZnO, CuO, and γ-Fe3O4 nanoparticles on two different wheat (Triticum aestivum L.) genotypes, namely, Kırik and ES-26, were investigated as micro elements in mature embryo culture. In this direction, nanoparticle constructions were tested with both the normal amount (1 ×) and the two (2 ×) and three (3 ×) quantities available in the Murashige and Skoog media. The study was supported by negative and positive controls. Obtained findings suggest that wheat embryos left to develop in applications containing nanoparticles do not actively utilize nanoparticle structures. As a result, the development of nanoparticle-containing applications was less than control. It has been determined that media containing 3 × CuO nanoparticles and media containing 3× ZnO nanoparticles are more successful than controls in terms of callus formation rate among all applications. The most successful group in terms of plant-building ability has been the control group. Plant regeneration did not increase with nanoparticle application compared to control. However, it is thought that this situation is mainly related to the utilization process of the plant by the nanoparticles. However, since the properties of nano-sized elements are variable, it is considered that the obtained data may be related to toxicity. This study is a first in the test of NP structures obtained by green synthesis in mature embryo culture. It is thought that this study contributes to the literature in determining the effects nanoparticle’s have on tissue culture development stages of embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30:709–714

    Article  CAS  Google Scholar 

  • Ahmet H, Adak MS (2007) Callus induction and plant regeneration in some Iraqi common wheat varieties. Tarim Bilim Derg 13:285–292

    Google Scholar 

  • Aydin M, Tosun M, Haliloglu K (2011) Plant regeneration in wheat mature embryo culture. Afr J Biotechnol 10:15749–15755

    Article  CAS  Google Scholar 

  • Bello-Bello JJ, Chavez-Santoscoy RA, Lecona-Guzmán CA, Bogdanchikova N, Salinas-Ruíz J, Gómez-Merino FC, Pestryakov A (2017) Hormetic response by silver nanoparticles on in vitro multiplication of sugarcane (Saccharum spp. cv. Mex 69–290) using a temporary immersion system. Dose Response. https://doi.org/10.1177/1559325817744945

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi RM, Kou M, Chen LG, Mao SR, Wang HG (2007) Plant regeneration through callus initiation from mature embryo of Triticum. Plant Breeding 126:9–12

    Article  CAS  Google Scholar 

  • Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Perez-De-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26

    Article  CAS  Google Scholar 

  • Delporte F, Mostade O, Jacquemin JM (2001) Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell Tissue Org 67:73–80

    Article  CAS  Google Scholar 

  • Gnanasangeetha D, Sarala Thambavani D (2014) Neural network modeling of placid ZNO nanoparticle as a sensible adsorbent for removal of As(III) Ions ingrained on activated silica using acalypha indica (ZnO-NPs-AS-AI). Int J Chem Technol Res 6:3546–3557

    Google Scholar 

  • Haliloglu K, Baenziger PS (2005) Screening wheat genotypes for high callus induction and regeneration capability from immature embryo cultures. J Plant Biochem Biot 14:155–160

    Article  Google Scholar 

  • Karaduman I, Gungor AA, Nadaroglu H, Altundas A, Acar S (2017) Green synthesis of gamma-Fe2O3 nanoparticles for methane gas sensing. J Mater Sci 28:16094–16105

    CAS  Google Scholar 

  • Khan MS, Zaka M, Abbasi BH, Rahman L, Shah A (2016) Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles. IET Nanobiotechnol 10(6):359–366

    Article  Google Scholar 

  • Kim YR, Park JI, Lee EJ, Park SH, Seong NW, Kim JH, Kim GY, Meang EH, Hong JS, Kim SH, Koh SB, Kim MS, Kim CS, Kim SK, Son SW, Seo YR, Kang BH, Han BS, An SSA, Yun HI, Kim MK (2014) Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. Int J Nanomed 9:109–126

    Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Mathias RJ, Simpson ES (1986) The interaction of genotype and culture-medium on the tissue-culture responses of wheat (Triticum-Aestivum L. Em Thell) callus. Plant Cell Tiss Org 7:31–37

    Article  Google Scholar 

  • Mbonyiryivuze A, Zongo S, Diallo A, Bertrand S, Minani E, Yadav LL, Mwakikunga B, Dhlamini SM, Maaza M (2015) Titanium dioxide nanoparticles biosynthesis for dye sensitized solar cells application: review. Phys Mater Chem 3:12–17

    CAS  Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684

    Article  CAS  PubMed  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Bin Kim S, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, New York

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nadaroglu H, Cicek S, Gungor AA (2017) Removing trypan blue dye using nano-Zn modified Luffa sponge. Spectrochim Acta A 172:2–8

    Article  CAS  Google Scholar 

  • Nazir S, Zaka M, Adil M, Abbasi BH, Hano C (2018) Synthesis, characterisation and bactericidal effect of ZnO nanoparticles via chemical and bio-assisted (Silybum marianum in vitro plantlets and callus extract) methods: a comparative study. IET Nanobiotechnol 12(5):604–608

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhu YT, Rao KV, Sai VS, Pavani T (2017) A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J Saudi Chem Soc 21:180–185

    Article  CAS  Google Scholar 

  • Purnhauser L, Medgyesy P, Czako M, Dix PJ, Marton L (1987) Stimulation of shoot regeneration in Triticum-aestivum. and Nicotiana-plumbaginifolia Viv tissue-cultures using the ethylene inhibitor AgNO3. Plant Cell Rep 6:1–4

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503

    Article  CAS  PubMed  Google Scholar 

  • Rashid H, Ghani RA, Chaudhry Z (2002) Effect of media, growth regulators and genotypes on callus induction and regeneration in wheat (Triticum estivum). Biotechnology 1:49–54

    Article  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  PubMed  Google Scholar 

  • Solati E, Dorranian D (2017) Estimation of lattice strain in zno nanoparticles produced by laser ablation at different temperatures. J Appl Spectrosc 84:490–497

    Article  CAS  Google Scholar 

  • Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult 129:195–207

    Article  CAS  Google Scholar 

  • ul Ain N, ul Haq I, Abbasi BH, Javed R, Zia M (2018) Influence of PVP/PEG impregnated CuO NPs on physiological and biochemical characteristics of Trigonella foenum-graecum L. IET Nanobiotechnol 12(3):349–356

    Article  PubMed Central  Google Scholar 

  • Van NL, Ma CX, Shang JY, Rui YK, Liu ST, Xing BS (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Xu LN, Zhao J, Wang XK, White JC, Xing BS (2016) CuO Nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50:6008–6016

    Article  CAS  PubMed  Google Scholar 

  • Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11:276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaka M, Abbasi BH (2017) Effects of bimetallic nanoparticles on seed germination frequency and biochemical characterisation of Eruca sativa. IET Nanobiotechnol 11(3):255–260

    Article  PubMed  Google Scholar 

  • Zaka M, Abbasi BH, Rahman LU, Shah A, Zia M (2016) Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa. IET Nanobiotechnol 10(3):134–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Niu YG, Meng XD, Li Y, Zhao JP (2013) Structural evolution and characteristics of the phase transformations between alpha-Fe2O3, Fe3O4 and gamma-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 15:8166–8172

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept—HN; Design—HN and AAG; Supervision—HN; Resource—KH; Materials—HN and KH; Data Collection and/or Processing—AHP and OBN; Analysis and/or Interpretation—HN; Literature Search—HN and AAG; Writing—HN and OBN; Critical Reviews—HN.

Corresponding author

Correspondence to Hayrunnisa Nadaroglu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interests exists.

Additional information

Communicated by Sergio J. Ochatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1787 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalci, O.B., Nadaroglu, H., Pour, A.H. et al. Effects of ZnO, CuO and γ-Fe3O4 nanoparticles on mature embryo culture of wheat (Triticum aestivum L.). Plant Cell Tiss Organ Cult 136, 269–277 (2019). https://doi.org/10.1007/s11240-018-1512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1512-8

Keywords

Navigation