Skip to main content

Enhanced Growth and Overcoming Abnormal Phenomena in Micropropagation by Nanoparticles

  • Chapter
  • First Online:
Plant Tissue Culture: New Techniques and Application in Horticultural Species of Tropical Region

Abstract

This chapter provides background technical information and demonstrates some positive effects of different metal nanoparticles on the growth and development of in vitro cultured plantlets. Metal nanoparticles were obtained by the aqueous solution method with the core composing of silver, iron, or cobalt (Ago, Feo, Coo). The shell of silver nanoparticles was made of chitosan, and the shell component for iron and cobalt nanoparticles was carboxymethyl cellulose. The abscission phenomenon in Rose plantlets (Rosa hybrida L. “Baby Love”) was suppressed when cobalt nanoparticles (CoNPs) were incorporated in the medium. During the micropropagation of Gerbera (Gerbera jamesonii “Revolution yellow”), silver nanoparticles (AgNPs) promoted plantlet growth and overcame the vitrification phenomenon. Iron nanoparticles (FeNPs) improved the quality of carnation (Dianthus caryophyllus “Express golem”) plantlets, increasing rooting efficiency and tolerance to culture conditions through increased activity of antioxidant enzymes. AgNPs and CoNPs helped to limit ethylene gas biosynthesis and action. The plantlets derived from in vitro cultures supplemented with AgNPs, CoNPs, and FeNPs gave the highest survival percentage and improved development at the nursery stage compared to the control without metal nanoparticle treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agustí J, Merelo P, Cercás M, Tadeo F (2009) Comparative transcriptional survey between laser-micro dissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biol 9:1–20

    Article  Google Scholar 

  • Amuamuha L, Pirzad A, Hadi H (2012) Effect of varying concentrations and time of nanoiron foliar application on the yield and essential oil of Pot marigold. IRJABS 3(10):2085–2090

    CAS  Google Scholar 

  • Bahmani R, Karami O, Gholami M (2009) Influence of carbon sources and their concentrations on rooting and hyperhydricity of apple rootstock MM.106. Appl Sci 6(11):1513–1517

    CAS  Google Scholar 

  • Banerjee J, Kole C (2016) Plant nanotechnology: an overview on concepts, strategies, and tools. In: Kole C, Kumar DS, Khodakovskaya MV (eds) Plant nanotechnology: principles and practices. Springer, Switzerland, pp 1–14

    Google Scholar 

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2019) The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25(1):112

    Article  PubMed Central  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Plant tissue culture: an introductory text. Springer, India, pp 260–263

    Book  Google Scholar 

  • Brown KM (1997) Ethylene and abscission. Physiol Plant 100:567–576

    Article  CAS  Google Scholar 

  • Chang C (2016) Q&A: How do plants respond to ethylene and what is its importance? BMC Biol 14(1):1–7

    Article  Google Scholar 

  • Chau H, Bang L, Buu N, Dung T, Ha H, Quang D (2008) Some results in manufacturing of nanosilver and investigation of its application for disinfection. Adv Nat Appl Sci 9(2):241–248

    CAS  Google Scholar 

  • Cristescu SM, Mandon J, Arslanov D, De Pessemier J, Hermans C, Harren FJ (2012) Current methods for detecting ethylene in plants. Ann Bot 111(3):347–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedlheim DL, Foss CA (2001) Metal nanoparticles: synthesis, characterization, and applications. CRC Press, Boca Raton, USA, pp 289–312

    Book  Google Scholar 

  • Fouad AS, Hafez RM (2018) Effect of cobalt nanoparticles and cobalt ions on alkaloids production and expression of CrMPK3 gene in Catharanthusroseus suspension cultures. Cell MolBiol (Noisy-le-Grand, France) 64(12):62–69

    Article  Google Scholar 

  • Gaspar T, Kevers C, Debergh P, Maene L, Paques M, Boxus P (1987) Morphological, physiological and ecological aspects. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry I. Minnesota Publishers, Dordrech, The Netherlands, pp 152–166

    Chapter  Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminaliaarjuna, for the enhanced seed germination activity of Gloriosasuperba. J Nanostructure Chem 4(3):1–11

    Article  Google Scholar 

  • Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2-3):143–151

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Changxing Z, Jayakumar K, Iqbal M (2009) Low concentration of cobalt growth, biochemical constituents, mineral status and yield in Zea mays. J Sci Res 1(1):128–137

    Article  Google Scholar 

  • Kharrazi M, Tehranifar A, Nemati S, Bagheri A, Sharifi A (2011) In vitro culture of carnation (Dianthus caryophyllus L.) focusing on the problem of vitrification. J Biol Environ Sci 5(13):1–6

    Google Scholar 

  • Khatun M, Rahman MM, Roy PK (2013) In vitro regeneration and field evaluation of carnation (Dianthus caryophyllus L.) through shoot tip and node culture. J Appl Res Technol 9(1):93–99

    Google Scholar 

  • Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48(6):3477–3485

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7:36492–36505

    Article  CAS  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordicacharantia). BMC Biotechnol 3(1):37–47

    Article  Google Scholar 

  • Kole C, Kumar DS, Khodakovskaya MV (eds) (2016) Plant nanotechnology: principles and practices. Springer, Switzerland, pp 263–303

    Book  Google Scholar 

  • Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanparticles: a review. J Nanotechnol 510246:1–8

    Article  Google Scholar 

  • Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3—A potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12(2):1–15

    Article  Google Scholar 

  • Lai CC, Lin HM, Nalawade SM (2005) Hyperhydricity in shoot cultures of Scrophulariayoshimurae can be effectively reduced by ventilation of culture vessels. J Plant Physiol 162(2):355–361

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chang PR, Huang J, Wang Y, Yuan H, Ren H (2013) Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotechnol 13(8):5561–5567

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang Y, Gao B, Zhang M (2015) Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One 10(4):1–12

    Google Scholar 

  • Lichtentaler HK, Wellburn AR (1985) Determination of total carotenoids, chlorophyll aand bof leaf in different solvents. Biochem Soc Trans 11(5):591–592

    Article  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zerovalent iron (nFe) by two plant species. Sci Total Environ 443(1):844–849

    Article  CAS  PubMed  Google Scholar 

  • MacDonald MT, Lada RR, Dorais M, Pepin S (2011) Endogenous and exogenous ethylene induces needle abscission and cellulase activity in post-harvest balsam fir (Abiesbalsamea L.). Trees 25(5):940–947

    Article  Google Scholar 

  • Mahmood S, Reza R, Hossain G, Hauser B (2017) Response of cytokinins on in vitro shoot multiplication of Rose cv. Frisco. Res Rev: J AgricSciTechnol 5(2):6–11

    Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  PubMed  Google Scholar 

  • Merelo P, Agustí J, Arbona V (2017) Corrigendum: cell wall remodeling in abscission zone cells during ethylene-promoted fruit abscission in citrus. Front Plant Sci 8(3):23–29

    Google Scholar 

  • Mitra B, Payam M, Behzad S (2015) The effect of iron nanoparticles spraying time, concentration on wheat. Biol Forum: Int J 7(1):679–683

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Plant Physiol 1(3):473–497

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Ngan HTM, Cuong DM, Tung HT, Nghiep ND, Le BV, Nhut DT (2020a) The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of Rose (RosahybridaL. ‘Baby Love’)plantlets cultured in vitro. Plant Cell Tissue Organ Cult 141(2):393–405

    Article  Google Scholar 

  • Ngan HTM, Tung HT, Le BV, Nhut DT (2020b) Evaluation of root growth, antioxidant enzyme activity and mineral absorbability of carnation (Dianthus caryophyllus “Express golem”) plantlets cultured in two culture systems supplemented with iron nanoparticles. Sci Hortic 272:109612

    Article  CAS  Google Scholar 

  • Peyvandi M, Parandeh H, Mirza M (2011) Comparing the effect of nano iron chelate and iron chelate on growth parameters, antioxidant enzymes activity of basil (Ocimumbasilicum L). Iran J Mod Cell Mol Biotechnol 1:89–99

    Google Scholar 

  • Phan C, Letouze R (1983) A comparative study of chlorophyll, phenolic and protein contents, and of hydroxycinnamate: CoA ligase activity of normal and ‘vitreous’ plants (Prunusavium L.) obtained in vitro. Plant Sci Lett 31(2):323–327

    Article  CAS  Google Scholar 

  • Saha N, Gupta SD (2018) Promotion of shoot regeneration of Swertiachirata by biosynthesized silver nanoparticles and their involvement in ethylene interceptions and activation of antioxidant activity. Plant Cell Tissue Organ Cult 134(2):289–300

    Article  CAS  Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197

    Google Scholar 

  • Sanzari I, Leone A, Ambrosone (2019) Nanotechnology in plant science: to make a long story short Front Bioeng Biotech 7: Article 120

    Google Scholar 

  • Seif SM, Sorooshzadeh A, Rezazadehs H, Naghdibadi HA (2011) Effect of nanosilver and silver nitrate on seed yield of borage. J Med Plant Res 5(2):171–175

    Google Scholar 

  • Senapati S, Rout G (2008) Study of culture conditions for improved micropropagation of hybrid rose. Hortic Sci 35(1):27–34

    Article  CAS  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Fathi-Achachlouie B (2018) The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. An Acad Bras Cienc 90(1):485–494

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Mohammad F (2015) Nanotechnology and plant sciences. Springer International Publishing Switzerland, London, 289p

    Book  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9(1):289–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Naffees AK, Son PTL (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169(1):73–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Tholen D, Poorter H, Voesenek L (2006) Ethylene and plant growth. In: Naffes AK (ed) Ethylene action in plants. Springer-Verlag, Berlin, Heidelberg, pp 35–46

    Chapter  Google Scholar 

  • Vakhrouchev AV, Golubchikov VB (2007) Numerical investigation of the dynamics of nanoparticle systems in biological processes of plant nutrition. J Phys Conf Ser 61(1):31–35

    Article  CAS  Google Scholar 

  • Vatanparast M, Hosseininaveh V, Ghadamyari M, Sajjadian SM (2014) Plant cell wall degrading enzymes, pectinase and cellulase, in the digestive system of the red palm weevil Rhynchophorusferrugineus. Plant Prod Sci 50(4):190–198

    Article  CAS  Google Scholar 

  • Yen NTK, Huy NP, Cuong HV, Linh NTN, Nam NB, Luan VQ, Nhut DT (2013) Effect of activated charcoal and aerated culture on growth and development growth of in vitro and ex vitro Gerbera jamesonii. Vietnam J Sci Tech 51(4):435–446

    Google Scholar 

  • Zhang YP, Hong J, Ye X (2009) Cellulase assays. In: Mielenz JR (ed) Biofuels: Methods in molecular biology (Methods and Protocols), vol 581. Humana Press, Totowa, pp 213–231

    Chapter  Google Scholar 

  • Ziv M (1991) Quality of micropropagated plants-vitrification. In Vitro Cell Dev Biol 27(2):64–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nhut, D.T., Ngan, H.T.M., Mai, N.T.N., Nguyen, P.L.H., Van Le, B., Tung, H.T. (2022). Enhanced Growth and Overcoming Abnormal Phenomena in Micropropagation by Nanoparticles. In: Nhut, D.T., Tung, H.T., YEUNG, E.CT. (eds) Plant Tissue Culture: New Techniques and Application in Horticultural Species of Tropical Region. Springer, Singapore. https://doi.org/10.1007/978-981-16-6498-4_15

Download citation

Publish with us

Policies and ethics