Skip to main content
Log in

Influence of nutrient supply and elicitors on glucosinolate production in E. sativa hairy root cultures

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Glucosinolates (GS) are secondary plant metabolites comprising different subgroups with opposing effects on human health. Hairy root cultures (HRC) are potent biotechnological tools allowing the biosynthesis of special substances under defined conditions. HRC of Eruca sativa, a brassicaceaous plant, were used to test different strategies to enhance GS levels and to alter the profile. Additional sulphur supply in the nutrient medium increased especially aliphatic GS by 2.7-fold, but also enhanced indole GS by 1.8-fold. Ethephon as well as jasmonic acid as chemical elicitors enhanced only indole GS levels, whereby especially 4-methoxyindol-3-ylmethyl or 1-methoxyindol-3-ylmethyl GS accumulated. Jasmonic acid was used in combination with pulsed electric field treatment as physical elicitor. Already within 24 h, GS levels doubled in treated HRC compared to the control. For estimation of production potency, the GS levels of HRC were compared to contents of aerial and root parts of E. sativa sprouts. HRC showed a distinct GS profile compared to the parent plant with a higher content of indole GS when compared to sprout roots, but overall lower total GS levels. Furthermore, HRC released GS into the culture medium, which could be enhanced by jasmonic acid and pulsed electric field treatment. This could comprise an efficient strategy for a continuous GS production and mining without solvent extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GS:

Glucosinolate

HRC:

Hairy root culture

JA:

Jasmonic acid

References

  • Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR (1996) The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surfaces. J Exp Bot 47:99–109

    Article  CAS  Google Scholar 

  • Bennett RN, Mellon FA, Botting NP, Eagles J, Rosa EAS, Williamson G (2002) Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket). Phytochemistry 61(1):25–30

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26(4):318–324

    Article  CAS  PubMed  Google Scholar 

  • Buxdorf K, Yaffe H, Barda O, Levy M (2013) The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS ONE, 8, e70771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31(3):461–477

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chen F, Zhang Y-L, Song J-Y (1999) Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza.. J Ind Microbiol Biotechnol 22(3):133–138

    Article  CAS  Google Scholar 

  • Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269(2):291–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Antuono LF, Elementi S, Neri R (2009) Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. J Sci Food Agric 89(4):713–722

    Article  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19(7):2225–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durieu P, Ochatt SJ (2000) Efficient intergeneric protoplast fusion between pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.). J Exp Bot 51(348): 1237–1242

    CAS  PubMed  Google Scholar 

  • Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9(5):573–581

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74(6):1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(10):528–537

    Article  CAS  PubMed  Google Scholar 

  • Gerendás J, Sailer M, Fendrich ML, Stahl T, Mersch-Sundermann V, Mühling KH (2008) Isothiocyanate concentration in kohlrabi (Brassica oleracea L. var. gongylodes) plants as influenced by sulfur and nitrogen supply. J Sci Food Agric 56(18):8334–8342

    Article  Google Scholar 

  • Gueven A, Knorr D (2011) Isoflavonoid production by soy plant callus suspension culture. J Food Eng 103(3):237–243

    Article  CAS  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55(3):224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janositz A, Noack AK, Knorr D (2011) Pulsed electric fields and their impact on the diffusion characteristics of potato slices. LWT—Food Sci Technol 44(9):1939–1945

    CAS  Google Scholar 

  • Kastell A, Smetanska I, Schreiner M, Mewis I (2013a) Hairy roots, callus, and mature plants of Arabidopsis thaliana exhibit distinct glucosinolate and gene expression profiles. Plant Cell Tissue Organ Cult 115:45–54

    Article  CAS  Google Scholar 

  • Kastell A, Smetanska I, Ulrichs C, Cai Z, Mewis I (2013b) Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Appl Biochem Biotechnol 169(2):624–635

    Article  CAS  PubMed  Google Scholar 

  • Kastell A, Zrenner R, Schreiner M, Kroh L, Ulrichs C, Smetanska I, Mewis I (2015) Metabolic engineering of aliphatic glucosinolates in hairy root cultures of Arabidopsis thaliana. Plant Mol Biol Rep 33(3):598–608

    Article  CAS  Google Scholar 

  • Kim SJ, Ishii G (2006) Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci Plant Nutr 52(3):394–400

    Article  CAS  Google Scholar 

  • Kintzios S, Makri O, Pistola E, Matakiadis T, Shi HP, Economou A (2004) Scale-up production of puerarin from hairy roots of Pueraria phaseoloides in an airlift bioreactor. Biotech Lett 26(13):1057–1059

    Article  CAS  Google Scholar 

  • Knorr D, Guelen M, Grahl T, Sitzmann W (1994) Food application of high electric field pulses. Trends Food Sci Technol 5(3):71–75

    Article  CAS  Google Scholar 

  • Li SM, Schonhof I, Krumbein A, Li L, Stutzel H, Schreiner M (2007) Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply. J Agric Food Chem 55(21):8452–8457

    Article  CAS  PubMed  Google Scholar 

  • Lippmann D, Lehmann C, Florian S, Barknowitz G, Haack M, Mewis I, Wiesner M, Schreiner M, Glatt H, Brigelius-Flohe R, Kipp AP (2014) Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently. Food Function 5(6):1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Melchini A, Traka MH, Catania S, Miceli N, Taviano MF, Maimone P, Francisco M, Mithen RF, Costa C (2013) Antiproliferative activity of the dietary isothiocyanate erucin, a bioactive compound from cruciferous vegetables, on human prostate cancer cells. Nutr Cancer 65(1):132–138

    Article  CAS  PubMed  Google Scholar 

  • Meng XZ, Xu J, He YX, Yang KY, Mordorski B, Liu YD, Zhang SQ (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25:1126–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis thaliana (L.) glucosinolate accumulation and response to both phloem feeding and chewing insects. Plant Physiol 138(2):1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131(1):298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nour-Eldin HH, Halkier BA (2009) A new method for measuring relative growth rate can uncover the costs of defensive compounds in Arabidopsis thaliana. Phytochem Rev 8(1):53–67

    Article  CAS  Google Scholar 

  • Ochatt S (2013) Plant cell electrophysiology: applications in growth enhancement, somatic hybridization and gene transfer. Biotechnol Adv 31(8):1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Omirou M, Papastefanou C, Katsarou D, Papastylianou I, Passam HC, Ehaliotis C, Papadopoulou KK (2012) Plant growth and physiology under heterogeneous salinity. Plant Soil 354(1–2):347–358

    Article  CAS  Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180(3):439–446

    Article  CAS  PubMed  Google Scholar 

  • Paparella C, Savatin DV, Marti L, De Lorenzo G, Ferrari S (2014) The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses. Plant Physiol 165(1):262–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1(5):404–411

    Article  CAS  PubMed  Google Scholar 

  • Saw N, Riedel H, Cai ZZ, Kutuk O, Smetanska I (2012) Stimulation of anthocyanin synthesis in grape (Vitis vinifera) cell cultures by pulsed electric fields and ethephon. Plant Cell Tissue Organ Cult 108(1):47–54

    Article  CAS  Google Scholar 

  • Schreiner M, Krumbein A, Knorr D, Smetanska I (2011) Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate. J Agric Food Chem 59(4):1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Schreiner M, Mewis I, Huyskens-Keil S, Jansen MAK, Zrenner R, Winkler JB, O’Brien N, Krumbein A (2012) UV-B induced secondary plant metabolites—potential benefits for plant and human health. Crit Rev Plant Sci 31(3):229–240

    Article  CAS  Google Scholar 

  • Sinisterra JV (1992) Application of ultrasound to biotechnology: an overview. Ultrasonics 30(3):180–185

    Article  CAS  PubMed  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng/Biotechnol 111:187–228

    Article  CAS  Google Scholar 

  • Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8(1):269–282

    Article  CAS  Google Scholar 

  • Tsong TY (1990) Electrical modulation of membrane proteins: Enforced conformationaloscillations and biological energy and signal transductions. Annu Rev Biophys Biophys Chem 19:83–106

    Article  CAS  PubMed  Google Scholar 

  • Tytgat TO, Verhoeven KJ, Jansen JJ, Raaijmakers CE, Bakx-Schotman T, McIntyre LM, van der Putten WH, Biere A, van Dam NM (2013) Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea. PLoS ONE 8(6):e65502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Zheng LP, Wu JY, Tan RX (2006) Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide 15(4):351–358

    Article  CAS  PubMed  Google Scholar 

  • Wiesner M, Hanschen F, Schreiner M, Glatt H, Zrenner R (2013) Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis. Int J Mol Sci 14(7):14996–15016

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu B-B, Li J-N, Zhang X-K, Wang R, Xie L-L, Chai Y-R (2016) Cloning and molecular characterization of a functional flavonoid 30-hydroxylase gene from Brassica napus. J Plant Phys 164(3):350–363

    Article  Google Scholar 

  • Ye H, Huang LL, Chen SD, Zhong JJ (2004) Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotechnol Bioeng 88(6):788–795

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Mewis.

Additional information

Communicated by Alison M.R. Ferrie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kastell, A., Schreiner, M., Knorr, D. et al. Influence of nutrient supply and elicitors on glucosinolate production in E. sativa hairy root cultures. Plant Cell Tiss Organ Cult 132, 561–572 (2018). https://doi.org/10.1007/s11240-017-1355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1355-8

Keywords

Navigation