Skip to main content

Advertisement

Log in

A rapid and efficient Agrobacterium-mediated transient gene expression system for strawberry leaves and the study of disease resistance proteins

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Transient gene expression is a simple and universal method and has been broadly applied in gene functional analyses in several plant species. However, few studies have reported the utilization and transient expression of strawberry leaves. Here, an Agrobacterium-mediated transient gene expression system was established in strawberry leaves. The strawberry leaf transient gene expression system was tested for protein expression, western blot assays, and protein subcellular localization. Furthermore, the Arabidopsis thaliana broad-spectrum disease resistance protein RPW8.2 was transiently expressed in strawberry leaves. Both the application of exogenous salicylic acid (SA) and the following infection by the strawberry powdery mildew pathogen, Podosphaera aphanis, resulted in increased expression of the RPW8.2 fusion protein. Reverse transcription quantitative PCR analysis showed that the transient expression of AtRPW8.2 in strawberry leaves could induce defense-related gene transcription levels. In conclusion, we demonstrated the potential of a rapid and efficient Agrobacterium-mediated transient gene expression system in strawberry leaves and its use for the study of disease resistant protein activity in strawberry leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agius F, Amaya I, Botella MA, Valpuesta V (2005) Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J Exp Bot 56:37–46. doi:10.1093/jxb/eri004

    CAS  PubMed  Google Scholar 

  • Almeida JR et al (2007) Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria × ananassa). Arch Biochem Biophys 465:61–71

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Han N, Wu J, Yang Y, Wang J, Zhu M, Bian H (2014) A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes. Plant Cell Tissue Organ Cult (PCTOC) 119:211–219

    Article  CAS  Google Scholar 

  • Baulcombe DC (1999) Gene silencing: RNA makes RNA makes no protein. Curr Biol 9:R599–601

    Article  CAS  PubMed  Google Scholar 

  • Christou P (1997) Rice transformation: bombardment. Plant Mol Biol 35:197–203

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299 (discussion 277)

    Article  CAS  PubMed  Google Scholar 

  • Fister AS, Shi Z, Zhang Y, Helliwell EE, Maximova SN, Guiltinan MJ (2016) Protocol: transient expression system for functional genomics in the tropical tree Theobroma cacao L. Plant Methods 12:19 doi:10.1186/s13007-016-0119-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Griesser M et al (2008) Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol 146:1528–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidarelli M, Baraldi E (2015) Transient transformation meets gene function discovery: the strawberry fruit case. Front Plant Sci 6:444 doi:10.3389/fpls.2015.00444

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y et al (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581. doi:10.1093/jxb/erq035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48:818–826. doi:10.1111/j.1365-313X.2006.02913.x

    Article  CAS  PubMed  Google Scholar 

  • Hu Y et al (2015) Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. Front Plant Sci 6:736. doi:10.3389/fpls.2015.00736

    PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jelly NS, Valat L, Walter B, Maillot P (2014) Transient expression assays in grapevine: a step towards genetic improvement. Plant Biotechnol J 12:1231–1245

    Article  PubMed  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Li J, Zhang Q-Y, Gao Z-H, Wang F, Duan K, Ye Z-W, Gao Q-H (2013) Genome-wide identification and comparative expression analysis of NBS–LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca. Gene 527:215–227

    Article  CAS  PubMed  Google Scholar 

  • Lu H (2009) Dissection of salicylic acid-mediated defense signaling networks. Plant Signal Behav 4:713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PJ et al (2013) Surveillance of influenza vaccination coverage–United States, 2007-08 through 2011-12 influenza seasons. Morb Mortal wkly Rep Surveill Summ 62:1–28

    Google Scholar 

  • Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179. doi:10.1111/j.1365-313X.2008.03596.x

    Article  CAS  PubMed  Google Scholar 

  • Medina-Puche L et al (2015) An R2R3-MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles. Plant Physiol 168:598–614. doi:10.1104/pp.114.252908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki K et al (2012) Establishment of a novel system to elucidate the mechanisms underlying light-induced ripening of strawberry fruit with an Agrobacterium-mediated RNAi technique. Plant Biotechnol 29:271–277

    Article  CAS  Google Scholar 

  • Nyman M, Wallin A (1992) Transient gene expression in strawberry (Fragaria x ananassa Duch.) protoplasts and the recovery of transgenic plants. Plant Cell Rep 11:105–108. doi:10.1007/BF00235264

    Article  CAS  PubMed  Google Scholar 

  • Oosumi T et al (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230. doi:10.1007/s00425-005-0170-3

    Article  CAS  PubMed  Google Scholar 

  • Paniagua C et al (2016) Antisense down-regulation of the strawberry beta-galactosidase gene FabetaGal4 increases cell wall galactose levels and reduces fruit softening. J Exp Bot 67:619–631. doi:10.1093/jxb/erv462

    Article  CAS  PubMed  Google Scholar 

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063. doi:10.1007/s00299-008-0531-z

    Article  CAS  PubMed  Google Scholar 

  • Schwab W, Hoffmann T, Kalinowski G, Preuß A (2011) Functional genomics in strawberry fruit through RNAi-mediated silencing. Genes Genomes Genom 5:91–101

    Google Scholar 

  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274:2063–2065

    Article  CAS  PubMed  Google Scholar 

  • Sheludko Y, Sindarovska Y, Gerasymenko I, Bannikova M, Kuchuk N (2007) Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression. Biotechnol Bioeng 96:608–614

    Article  CAS  PubMed  Google Scholar 

  • Spolaore S, Trainotti L, Casadoro G (2001) A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J Exp Bot 52:845–850

    Article  CAS  PubMed  Google Scholar 

  • Spolaore S, Trainotti L, Pavanello A, Casadoro G (2003) Isolation and promoter analysis of two genes encoding different endo-beta-1,4-glucanases in the non-climacteric strawberry. J Exp Bot 54:271–277

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786. doi:10.1002/elps.200500722

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Devoto A, Turner JG, Xiao S (2007) Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Mol Plant-Microbe Interact 20:966–976 doi:10.1094/MPMI-20-8-0966

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21:2898–2913. doi:10.1105/tpc.109.067587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Hu Y, Cui M-Y, Han Y-T, Gao K, Feng J-Y (2016a) Identification and transcript analysis of the TCP transcription factors in the diploid woodland strawberry Fragaria vesca. Front Plant Sci 7:1937

    PubMed  PubMed Central  Google Scholar 

  • Wei W, Hu Y, Han YT, Zhang K, Zhao FL, Feng JY (2016b) The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: identification and expression analysis under biotic and abiotic stresses. Plant Physiol Biochem 105:129–144 doi:10.1016/j.plaphy.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273. doi:10.1111/j.1467-7652.2005.00123.x

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120. doi:10.1126/science.291.5501.118

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003a) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Charoenwattana P, Holcombe L, Turner JG (2003b) The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco. Mol Plant-Microbe Interact 16:289–294 doi:10.1094/MPMI.2003.16.4.289

    Article  CAS  PubMed  Google Scholar 

  • Xiao S et al (2005) The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42:95–110. doi:10.1111/j.1365-313X.2005.02356.x

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572 doi:10.1038/nprot.2007.199

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Folta KM, Davis TM (2014) Somatic embryogenesis, tetraploidy, and variant leaf morphology in transgenic diploid strawberry (Fragaria vesca subspecies vesca ‘Hawaii 4’). BMC Plant Biol 14:1

    Article  Google Scholar 

  • Zhang K et al (2015) Genome-wide identification and expression analysis of the CDPK gene family in grape Vitis spp. BMC Plant Biol 15:164. doi:10.1186/s12870-015-0552-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Yue D, Wei W, Hu Y, Feng J, Zou Z (2016) Characterization and functional analysis of Calmodulin and Calmodulin-like genes in Fragaria vesca Front Plant Sci 7. doi:10.3389/fpls.2016.01820

  • Zhao F-L et al (2016) A highly efficient grapevine mesophyll protoplast system for transient gene expression and the study of disease resistance proteins. Plant Cell Tissue Organ Cult (PCTOC) 125:43–57

    Article  CAS  Google Scholar 

  • Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853 doi:10.1007/s00299-008-0510-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank SX kindly provided the vectors of RPW8.2. The authors would also like to thank three anonymous reviewers for comments on the manuscript. The present study was financially supported by grants from the National Natural Science Foundation of China (Grant No. 31201657), the major program of Yangling Agricultural Hi-tech Industry Demo Zone synergy innovation for cooperation in production, study, and research (2016CXY-11), and the project for Agriculture Sci-Tech demonstration and extension of Yangling Agricultural Hi-tech Industry Demo Zone (TS-2016-18).

Author information

Authors and Affiliations

Authors

Contributions

JYF conceived the study. MYC performed all the experiments with the assistance of WW, KG, YGX, and YG. MYC, WW, and JYF analyzed the data. MYC and JYF contributed to writing the manuscript. All authors read and approved the final manuscript. The authors are grateful to Dr. Ke Duan of the Shanghai Academy of Agricultural Sciences for generously providing wild type Fragaria vesca plants.

Corresponding author

Correspondence to Jia-Yue Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Maria Margarida Oliveira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, MY., Wei, W., Gao, K. et al. A rapid and efficient Agrobacterium-mediated transient gene expression system for strawberry leaves and the study of disease resistance proteins. Plant Cell Tiss Organ Cult 131, 233–246 (2017). https://doi.org/10.1007/s11240-017-1279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1279-3

Keywords

Navigation