Skip to main content
Log in

In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The influence of different light spectra and intensities was evaluated in an in vitro culture of Achillea millefolium L. (yarrow). The treatments were: use of light emitting diode (LED) lamps in the blue, red, green and white wavelengths, and the intensities of 13; 27; 35; 47 and 69 µmol m−2 s−1, obtained with a cool fluorescent lamp. At 45 days of culture in hormone-free MS medium, the production of dry matter, survival, rooting, length of shoots and roots, numbers of roots, pigments, as well as volatile constituents, were evaluated. The quality and intensity of light significantly influenced the in vitro growth of yarrow. In the experiment with LEDs, the blue spectrum provided the highest dry matter accumulation, number of roots, percentage of rooting and survival. In different light intensities, 27 µmol m−2 s−1 showed the highest values for the variables analyzed. Thus, blue LED spectrum or cool fluorescent lamp with 27 µmol m−2 s−1 benefits the in vitro growth of yarrow. A variation in number, content and profile of volatile constituents under the influence of quality and light intensity was also observed. The major constituents identified were sabinene, 1,8 cineole, borneol, β-caryophyllene and β-cubebene, independent of the light treatments. The amount and composition of the volatile compounds ranged with the intensity and quality of light. Thus, it is possible to adjust the ambient light in order to yield the compounds of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LED:

Light emitting diodes

GC–MS:

Gas chromatography–mass spectrometry

TDZ:

Thidiazuron

MS:

Murashige and Skoog medium

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream, p 804

  • Aharoni A, Giri AP, Deuerlein S, Griepink F et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anasori P, Asghari G (2009) Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Res Pharm Sci 3:59–63

    Google Scholar 

  • Applequist WL, Moerman DE (2011) Yarrow (Achillea millefolium L.): a neglected panacea? A review of ethnobotany, bioactivity, and biomedical research. Econ Bot 65:209–225

    Article  Google Scholar 

  • Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:197–219

    Article  Google Scholar 

  • Benedek B, Rothwangl-Wiltschnigg K, Rozema E, Gjoncaj N et al (2008) Yarrow (Achillea millefolium L. sl): pharmaceutical quality of commercial samples. Pharmazie 63:23–26

    CAS  PubMed  Google Scholar 

  • Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Tripathy BC (2012) Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol 159:433–449. doi:10.1104/pp.112.195859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett 32:1199–1205. doi:10.1007/s10529-010-0290-0

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Alderson PG, Wright CJ (2008) Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils. Environ Exp Bot 63:216–223

    Article  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117. doi:10.1146/annurev.genet.38.072902.092259

    Article  CAS  PubMed  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20. doi:10.1016/j.plaphy.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • Eliasson L, Brunes L (1980) Light effects on root formation in aspen and willow cuttings. Physiol Plant 48:261–265

    Article  Google Scholar 

  • Fernandes VF, Bezerra LDA, Mielke MS, Silva DDC, Costa LCDB (2014) Leaf anatomy and ultrastructure of Ocimum gratissimum under different light radiation levels. Cien Rural 44:1037–1042. doi:10.1590/S0103-84782014000600014

    Article  Google Scholar 

  • Fiola JA, Hassan MA, Swartz HJ, Bors RH, McNicols R (1990) Effect of thidiazuron, light fluence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell Tissue Organ Cult 20:223–228

    CAS  Google Scholar 

  • Gonçalves JFDC, Barreto DCDS, Santos Junior UMD, Fernandes AV, Sampaio PDTB, Buckeridge MS (2005) Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaeodora Ducke) under different light intensities. Braz J Plant Physiol 17:325–334

    Google Scholar 

  • Gupta SK, Srivastava AK, Singh PK, Tuli R (1997) In vitro proliferation of shoots and regeneration of cotton. Plant Cell Tissue Organ Cult 51:149–152

    Article  Google Scholar 

  • Hahn EJ, Kozai T, Paek KY (2000) Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets. J Plant Biol 43:247–250

  • Heo J, Lee C, Chakrabarty D, Paek K (2002) Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regul 38:225–230

  • Heo JW, Lee CW, Paek KY (2006) Influence of mixed LED radiation on the growth of annual plants. J Plant Biol 49:286–290

    Article  Google Scholar 

  • Jo EA, Tewari RK, Hahn EJ, Paek KY (2008) Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazonica. Plant Biotechnol Rep 2:207–212. doi:10.1007/s11816-008-0063-6

    Article  Google Scholar 

  • Kim HH, Wheeler RM, Sager JC, Gains GD, Naikane JH (2005) Evaluation of lettuce growth using supplemental green light with red and blue light-emitting diodes in a controlled environment—a review of research at Kennedy Space Center. V Int Symp Artif Light Hortic 711:111–120

    Google Scholar 

  • Kindlovits S, Németh É (2012) Sources of variability of yarrow (Achillea SPP.) essential oil. Acta Aliment 41:92–103

    Article  CAS  Google Scholar 

  • Kurilcik A, Canova MR, Dapkuniene S, Zilinskaite S, Kurilcik G et al (2008) In vitro culture of Chrysanthemum plantlets using light emitting diodes. Cent Eur J Biol 3:161–167

    Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New York. doi:10.1002/0471142913.faf0403s01

    Google Scholar 

  • Liu CZ, Guo C, Wang YC, Ouyang F (2002) Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Process Biochem 38:581–585. doi:10.1016/S0032-9592(02)00165-6

    Article  CAS  Google Scholar 

  • Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. HortScience 43:1951–1956

    Google Scholar 

  • Morais TP, Luz JMQ, Silva SM, Resende RF, Silva AS (2012) Aplicações da cultura de tecidos em plantas medicinais. Rev Bra de Plant Med 14:110–121

    Article  Google Scholar 

  • Morrow RC (2008) LED lighting in horticulture. HortScience 43:947–1950

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nhut DT, Hong LTA, Watanabe H, Goi M, Tanaka M (2000) Growth of banana plantlets cultured in vitro under red and blue light emitting diode (LED) irradiation source. Acta Hortic 575:7–23

    Google Scholar 

  • Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M (2003) Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LED). Plant Cell Tissue Organ Cult 73:43–52

    Article  CAS  Google Scholar 

  • NIST (2008) National Institute of Standards and Technology—Chemistry Web Book http://webbook.nist.gov/chemistry. Accessed 16 Sept 2013

  • Park YG, Oh HJ, Jeong BR (2013) Growth and anthocyanin concentration of Perilla frutescens var. acuta Kudo as affected by light source and DIF under controlled environment. Hortic Environ Biotechnol 54:103–108. doi:10.1007/s13580-013-0147-2

    Article  CAS  Google Scholar 

  • Peer WA, Langenheim JH (1998) Influence of phytochrome on leaf monoterpene variation in Satureja douglasii. Biochem Syst Ecol 26:25–34

    Article  CAS  Google Scholar 

  • Poudel PR, Kataoka I, Mochioka R (2008) Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult 92:147–153. doi:10.1007/s11240-007-9317-1

    Article  Google Scholar 

  • Ren J, Guo S, Xu C, Yang C, Ai W, Tang Y, Qin L (2014) Effects of different carbon dioxide and LED lighting levels on the anti-oxidative capabilities of Gynura bicolor DC. Adv Space Res 53:353–366. doi:10.1016/j.asr.2013.11.019

    Article  CAS  Google Scholar 

  • Richter G, Wessel K (1985) Red light inhibits blue-induced chloroplast development in cultured plant cells at the mRNA level. Plant Mol Biol 5:175–182

    Article  CAS  PubMed  Google Scholar 

  • SAEG (2007) Sistema para Análises Estatísticas e Genéticas. Versão 9.1. Viçosa: UFV

  • Sáez PL, Bravo L, Latsague MI, Toneatti MJ, Sánchez-Olate M, Ríos DG (2013) Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition. Plant Sci 201:12–24. doi:10.1016/j.plantsci.2012.11.008

    Article  PubMed  Google Scholar 

  • Sales JF, Pinto JEBP, Ferri PH, Silva FG, Oliveira CBA, Botrel PP (2009) Influência do nível de irradiância no crescimento, produção e composição química do óleo essencial de hortelã-do-campo (Hyptis marrubioides Epl). Semina Cien Agrar 30:389–396. doi:10.5433/1679-0359.2009v30n2p389

    CAS  Google Scholar 

  • Soontornchainaksaeng P, Chaicharoen S, Sirijuntarut M, Kruatrachue M (2001) In vitro studies on the effect of light intensity on plant growth of Phaius tankervilliae (Banks ex L’Herit) Bl. and Vanda coerulea Giff. Sci Asia 27:233–237

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? J Trends Plant Sci 13:178–182

    Article  CAS  Google Scholar 

  • Takahashi H, Yamada H, Yoshida C, Imamura T (2012) Modification of light quality improves the growth and medicinal quality of clonal plantlets derived from the herbal plant Gentiana. Plant Biotechnol 29:315–318

    Article  Google Scholar 

  • Topchiy NM, Sytnik SK, Syvash OO, Zolotareva OK (2005) The effect of additional red irradiation on the photosynthetic apparatus of Pisum sativum. Photosynthetica 43:451–456

    Article  CAS  Google Scholar 

  • Trouwborst G, Oosterkamp J, Hogewoning SW, Harbinson J, Van Ieperen W (2010) The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol Plant 138:289–300. doi:10.1111/j.1399-3054.2009.01333.x

    Article  CAS  PubMed  Google Scholar 

  • Van Den Dool H, Kratz PDJA (1963) Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471

    Article  Google Scholar 

  • Van Huylenbroeck J, Piqueras A, Debergh P (2000) The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. Plant Sci 155:59–66. doi:10.1016/S0021-9673(01)80947-X

    Article  PubMed  Google Scholar 

  • Yeh N, Jen-Ping Chung (2009) High-brightness LEDs—energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energy Rev 13:2175–2180. doi:10.1016/j.rser.2009.01.027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Pesquisa do Estado de Minas Gerais (FAPEMIG) for the financial support (scholarships and research grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Caldeira Almeida Alvarenga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarenga, I.C.A., Pacheco, F.V., Silva, S.T. et al. In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell Tiss Organ Cult 122, 299–308 (2015). https://doi.org/10.1007/s11240-015-0766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0766-7

Keywords

Navigation