Skip to main content

Advertisement

Log in

Jasmonic acid stimulates the oxidative responses and triterpene production in Jatropha curcas cell suspension cultures through mevalonate as biosynthetic precursor

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Jatropha curcas has considerable potential for production of biodiesel and secondary metabolites with medicinal uses. Herein, J. curcas cell suspension cultures were established to study the effect of jasmonic acid (JA) elicitation on triterpene production and oxidative responses. Cell cultures grown in dark conditions reached maximum biomass accumulation at the 12th day of culture (14.3 ± 0.45 g DW L−1) with a specific growth rate μ = 0.131 d−1. Elicitation with JA (200 or 400 μM) on 4-days-old cell cultures caused reduction in biomass and triterpene contents. In contrast, application of 200 μM JA at the 7th day of culture triggered triterpene accumulation by three times (1180 ± 12.3 μg g−1 DW, at day 2) with respect to control, without significant changes in biomass and viability. After 2 days of elicitation, betulin increased up to 7.3-fold (from 110.6 ± 20.7 to 808.7 ± 55.4 μg g−1 DW), while betulinic acid reached the maximum amount at day 6 after elicitation (245.6 ± 3.7 to 835 ± 41.5 μg g−1 DW). Lupeol presented a moderate increase (167.9 ± 51.0–288.8 ± 7.3 μg g−1 DW) along 8 days after elicitation. In correlation with triterpene production, JA application induced oxidative responses evaluated by an increase in the H2O2 levels up to three times and of malondialdehyde by 59 %. At day 4 after elicitation, catalase showed higher increase (122 %) than peroxidases (63 %) and ascorbate peroxidase (26 %). Incorporation of radioactive labels from (R,S)-[2-14C]mevalonic acid in triterpenes and sterols confirmed its role as metabolic precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adebowale KO, Adedire CO (2006) Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr J Biotechnol 5:901–906. doi:10.5897/AJB05.424

    CAS  Google Scholar 

  • Akashi T, Furuno T, Takahashi T, Ayabe SI (1994) Biosynthesis of triterpenoids in cultured cells, and regenerated and wild plant organs of Taraxacum officinale. Phytochemistry 36:303–308. doi:10.1016/S0031-9422(00)97065-1

    Article  CAS  Google Scholar 

  • Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336. doi:10.1093/jxb/eri058

    Article  CAS  PubMed  Google Scholar 

  • Chong TM, Adullab MA, Fadzillabb NM, Lai OM, Laijs NH (2005) Jasmonic acid elicitation of anthraquinones with some associated enzymic and non enzymic antioxidant responses in Morinda elliptica. Enzyme Microb Technol 36:469–477. doi:10.1016/j.enzmictec.2004.11.002

    Article  CAS  Google Scholar 

  • Dzubak P, Hajduch MV, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 23:394–411. doi:10.1039/B515312N

    Article  CAS  PubMed  Google Scholar 

  • Evers M, Poujade C, Soler F, Ribeil Y, James C, Lelièvre Y, Geguen JC, Reisdorf D, Morize I, Pauwels E, De Clercq E, Hénin Y, Bousseau A, Mayaux JF, Le Pecq JB, Dereu N (1996) Betulinic acid derivatives: a new class of HIV type 1 specific inhibitors with a new mode of action. J Med Chem 39:1056–1068. doi:10.1021/jm950670t

    Article  CAS  PubMed  Google Scholar 

  • Falodun A, Nworgu ZAM, Osayemwenre E (2011) Smooth muscle relaxant evaluation of Jatropha curcas Linn (Euphorbiaceae) and isolation of triterpenes. Niger J Physiol Sci 26:133–137

    CAS  PubMed  Google Scholar 

  • Fan G, Zhai Q, Li X, Zhan Y (2013) Compounds of Betula platyphylla cell suspension cultures in response to fungal elicitor. Biotechnol Biotechnol Equip 27:3569–3572. doi:10.5504/BBEQ.2012.0114

    Article  CAS  Google Scholar 

  • Flores-Sánchez IJ, Ortega-Lopez J, Montes-Horcasitas MC, Ramos-Valdivia AC (2002) Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa. Plant Cell Physiol 43:1502–1509

    Article  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. doi:10.1105/tpc.105.033589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima EO, Seki H, Ohyama K, Ono E, Umemoto N, Mizutani M, Saito K, Murakana T (2011) CYP716A Subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol 52:2050–2061. doi:10.1093/pcp/pcr146

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Kroemer G (2009) Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today 14:885–890. doi:10.1016/j.drudis.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  • Gallo BC, Sarachine MJ (2009) Biological activities of lupeol. Int J Biomed Pharma Sci 3:46–66

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Hu FX, Zhong JJ (2008) Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochem 43:113–118. doi:10.1016/j.procbio.2007.10.010

    Article  CAS  Google Scholar 

  • Huerta-Heredia AA, Marín-López R, Ponce-Noyola T, Cerda-García-Rojas CM, Trejo-Tapia G, Ramos-Valdivia AC (2009) Oxidative stress induces alkaloid production in Uncaria tomentosa root and cell cultures in bioreactors. Eng Life Sci 3:211–221. doi:10.1002/elsc.200800118

    Article  Google Scholar 

  • James JT, Tugizimana F, Steenkamp PA, Dubery IA (2013) Metabolomic analysis of methyl jasmonate induced triterpenoid production in the medicinal herb Centella asiatica (L) Urban. Molecules 18:4267–4281. doi:10.3390/molecules18044267

    Article  CAS  PubMed  Google Scholar 

  • Kauss H, Jeblick W, Ziegler J, Krabler W (1994) Pretreatment of parsley (Petroselinum crispum L.) suspension cultures with methyl jasmonate enhances elicitation of activated oxygen species. Plant Physiol 105:89–94. doi:10.1104/pp.105.1.89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial use (Jatropha curcas L.): A review. Ind Crop Prod 28:1–10. doi:10.1016/j.indcrop.2008.01.001

    Article  CAS  Google Scholar 

  • Lambert E, Faizal A, Geelen D (2011) Modulation of triterpene saponin production: in vitro cultures, elicitation, and metabolic engineering. Appl Biochem Biotechnol 164:220–237. doi:10.1007/s12010-010-9129-3

    Article  CAS  PubMed  Google Scholar 

  • Laszczyk M (2009) Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med 75:1549–1560. doi:10.1055/s-0029-1186102

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Fu ML, Chen QH (2011) Biotransformation optimization of betulin into betulinic acid production catalysed by cultured Armillaria luteo-virens Sacc ZJUQH100-6 cells. J Appl Microbiol 110:90–97. doi:10.1111/j.1365-2672.2010.04857.x

    Article  CAS  PubMed  Google Scholar 

  • Norrizah JS, Suhaimi YM, Rohaya A, Roslan N (2012) Ursolic acid and oleanolic acid production in elicited cell suspension cultures of Hedyotis corymbosa. Biotechnology 11:238–242. doi:10.3923/biotech.2012.238.242

    Article  CAS  Google Scholar 

  • Pandey H, Pandey P, Singh S, Gupta R, Banerjee S (2015) Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation. Protoplasma 252:647–655. doi:10.1007/s00709-014-0711-3

    Article  CAS  PubMed  Google Scholar 

  • Patil RA, Lenka SK, Normanly J, Walker EL, Roberts SC (2014) Methyl jasmonate represses growth and affects cell cycle progression in cultured Taxus cells. Plant Cell Report 33:1479–1492. doi:10.1007/s00299-014-1632-5

    Article  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356. doi:10.1016/0003-2697(77)90043-4

    Article  CAS  PubMed  Google Scholar 

  • Pütter J (1974) Peroxidases. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Verlag Chemie-Academic Press, New York, pp 685–690

    Chapter  Google Scholar 

  • Ramos-Valdivia AC, Huerta-Heredia AA, Trejo-Tapia G, Cerda- García-Rojas CM (2012) Secondary metabolites as non-enzymatic plant protectors from oxidative stress. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. International Publishing House, New Delhi, pp 413–441

    Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N et al (2005) Coordinated activation of metabolic pathways for antioxidants and defense compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668. doi:10.1111/j.1365-313X.2005.02560.x

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Ferreira-Silva SL, Fontenele AV, Ribeiro RV, Viégas RA, Silveira JAG (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164. doi:10.1016/j.jplph.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  • Soomro R, Memon R (2007) Establishment of callus and suspension culture in Jatropha curcas. Pakistan J Bot 39:2431–2441

    Google Scholar 

  • Srivastava P, Sisodia V, Chaturvedi (2011) Effects of culture conditions on synthesis of triterpenoids in suspension cultures of Lantana camara L. Bioprocess Biosyst Eng 34:75–80. doi:10.1007/s00449-010-0448-0

    Article  CAS  PubMed  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545. doi:10.1104/pp.103.032250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdés-Rodríguez OA, Pérez-Vazquez A, Muñoz-Gamboa C (2014) Drivers and consequences of the first Jatropha curcas plantations in Mexico. Sustainability 6:3732–3746. doi:10.3390/su6063732

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66. doi:10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Wang JW, Wu JY (2005) Nitric oxide is involved in methyl jasmonate induced defense responses and secondary metabolism activities of Taxus cells. Plant Cell Physiol 46:923–930. doi:10.1093/pcp/pci098

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058. doi:10.1093/aob/mct067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49:1092–1111. doi:10.1093/pcp/pcn086

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. doi:10.1016/j.biotechadv.01.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financed by CINVESTAV-IPN and CONACYT-Mexico (grant 222097). FZM thanks CONACYT-Mexico for a doctoral fellowship (163338). Authors wish to thank Dr G. Luna-Palencia for the advice in chromatographic analysis and C. Fontaine for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Ramos-Valdivia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaragoza-Martínez, F., Lucho-Constantino, G.G., Ponce-Noyola, T. et al. Jasmonic acid stimulates the oxidative responses and triterpene production in Jatropha curcas cell suspension cultures through mevalonate as biosynthetic precursor. Plant Cell Tiss Organ Cult 127, 47–56 (2016). https://doi.org/10.1007/s11240-016-1028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1028-z

Keywords

Navigation