Skip to main content
Log in

Comparative expression analysis of five caulimovirus promoters in citrus

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Four caulimovirus-derived constitutive promoters were evaluated for gene expression in citrus and their expression levels were compared with a 35S promoter. Chimeric promoters made with duplicated enhancer sequences from the cauliflower mosaic virus (D35S), the cassava vein mosaic virus (DCsVMV), the figwort mosaic virus (DFMV), the mirabilis mosaic virus (DMMV) and the peanut chlorotic streak virus (DPCLSV) were inserted into a transformation vector fused to the gus reporter gene. Gene expression patterns driven by these promoters were analyzed in the transgenic citrus cultivar Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.). The histochemical and fluorometric measurement of GUS activity and the gene expression quantification by RT-qPCR analysis demonstrate that the DMMV promoter is able to direct gene expression in citrus as strongly as the D35S promoter and represents great application potential in citrus biotechnology. The DFMV, DCsVMV and DPCLSV constitutive promoters were weaker compared to the D35S promoter but can be considered for use in gene stacking strategies for the development of transgenic citrus. Our results also reveal the importance of the evaluation of specific promoter fragments for a particular crop cultivar due to the availability of species-specific transcription factors that can define the strength and tissue specificity of a determinate promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8:2195–2202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Combinatorial and synergistic properties of CaMV 35S-enhancer subdomains. EMBO J 9:1685–1696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90:47–62

    Article  PubMed  Google Scholar 

  • Bhattacharyya S, Pattanaik S, Maiti IB (2003) Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the peanut chlorotic streak virus (PClSV) promoter-leader and the antisense orientation of PClSV ORF VII (p7R). Planta 218:115–124

    Article  CAS  PubMed  Google Scholar 

  • Burow M, Chlan C, Sen P, Lisca A, Murai N (1990) High-frequency generation of transgenic tobacco plants after modified leaf disk cocultivation with Agrobacterium tumefaciens. Plant Mol Biol Rep 8:124–139

    Article  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75:26–30

    Article  CAS  Google Scholar 

  • Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782

    Article  CAS  PubMed  Google Scholar 

  • Dey N, Maiti IB (2003) Promoter deletion and comparative expression analysis of the mirabilis mosaic caulimovirus (MMV) sub-genomic transcript (Sgt) promoter in transgenic plants. Transgenics 4:35–54

    CAS  Google Scholar 

  • Dietz-Pfeilstetter A (2010) Stability of transgene expression as a challenge for genetic engineering. Plant Sci 179:164–167

    Article  CAS  Google Scholar 

  • Dutt M, Grosser J (2009) Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell, Tissue Organ Cult 98:331–340

    Article  CAS  Google Scholar 

  • Dutt M, Vasconcellos M, Grosser J (2011) Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell, Tissue Organ Cult 107:79–89

    Article  CAS  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci 175:423–430

    Article  CAS  Google Scholar 

  • Dutt M, Ananthakrishnan G, Jaromin M, Brlansky R, Grosser J (2012) Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. Tree Physiol 32:83–93

    Article  CAS  PubMed  Google Scholar 

  • Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser J (2014) Temporal and spatial control of gene expression in horticultural crops. Hortic Res 1:14047

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang RX, Nagy F, Sivasubramaniam S, Chua NH (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • François IEJA, Broekaert WF, Cammue BPA (2002) Different approaches for multi-transgene-stacking in plants. Plant Sci 163:281–295

    Article  Google Scholar 

  • Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21:1163–1181

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruits. In Vitro Cell Dev Biol Plant 40:442–449

    Article  Google Scholar 

  • Govindarajulu M, Elmore JM, Fester T, Taylor CG (2008) Evaluation of constitutive viral promoters in transgenic soybean roots and nodules. Tech Adv 21:1027–1035

    CAS  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  PubMed  Google Scholar 

  • Harpster MH, Townsend JA, Jones JD, Bedbrook J, Dunsmuir P (1988) Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco sugarbeet and oilseed rape callus tissue. Mol Gen Genet 212:182–190

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hull R, Covey S (1983) Replication of cauliflower mosaic virus. Sci Prog (Oxford) 168:403–422

    Google Scholar 

  • Janick J, Moore JN (1975) Advances in fruit breeding. Purdue University Press, West Lafayette

    Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jopcik M, Moravcikova J, Matusikova I, Libantova J (2014) Spacer length-dependent protection of specific activity of pollen and/or embryo promoters from influence of CaMV 35S promoter/enhancer in transgenic plants. Plant Cell, Tissue Organ Cult 118:507–518

    Article  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Ding C, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam E, Benfey PN, Chua NH (1989) Characterization of AS1: a factor binding site on the 35S promoter of cauliflower mosaic virus. In: Lamb C, Beachy R (eds) Plant gene transfer: UCLA symposia on molecular and cellular biology. New series, vol 129. Alan R. Liss, New York, pp 71–79

    Google Scholar 

  • Lee TI, Young RA (2000) Transcription of eukaryotic proteincoding genes. Annu Rev Genet 34:77–137

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Jayasankar S, Gray DJ (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci 160:877–887

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley K, Gray D (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227

    Article  CAS  Google Scholar 

  • López-Ochoa L, Acevedo-Hernández G, Martínez-Hernández A, Argüello-Astorga G, Herrera-Estrella L (2007) Structural relationships between diverse cis-acting elements are critical for the functional properties of a rbcS minimal light regulatory unit. J Exp Bot 58:4397–4406

    Article  PubMed  Google Scholar 

  • Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244:440–444

    Article  CAS  PubMed  Google Scholar 

  • Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6:143–156

    Article  CAS  PubMed  Google Scholar 

  • Mayo M (1999) Developments in plant virus taxonomy since the publication of the 6th ICTV report. Arch Virol 144:1659–1666

    Article  CAS  PubMed  Google Scholar 

  • Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Sun X, Mumm RH (2014) Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation. Mol Breed 33:105–115

    Article  CAS  PubMed  Google Scholar 

  • Peremarti A, Twyman RM, Gomez-Galera S, Naqvi S, Farre G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378

    Article  CAS  PubMed  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    Article  CAS  Google Scholar 

  • Que Q, Chilton MD, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229. doi:10.4161/gmcr.1.4.13439

    Article  PubMed  Google Scholar 

  • Ranjan R, Patro S, Kumaria S, Kumar D, Dey N, Maiti IB (2011) Efficient chimeric promoters derived from full-length and sub-genomic transcript promoters of figwort mosaic virus (FMV). J Biotechnol 152:58–62

    Article  CAS  PubMed  Google Scholar 

  • Schünmann PHD, Richardson AE, Vickers CE, Delhaize E (2004) Promoter analysis of the barley Pht1; 1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136:4205–4214

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh Z, Sansavini S (1998) Genetic transformation and fruit crop improvement. Plant Breed Rev 16:87–134

    Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen H, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  CAS  PubMed  Google Scholar 

  • Thomas TL (1993) Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5:1401–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urriola J, Rathore K (2014) Temporal and spatial activities of a rice glutelin promoter in transgenic sorghum. Plant Cell, Tissue Organ Cult 116:227–234

    Article  CAS  Google Scholar 

  • Vaughan SP, James DJ, Lindsey K, Massiah AJ (2006) Characterization of FaRB7, a near root-specific gene from strawberry (Fragaria ananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. J Exp Bot 57:3901–3910

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer B, De Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter. Plant Mol Biol 31:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer B, de Kochko A, Fux CI, Beachy RN, Fauquet C (1998) Functional organization of the cassava vein mosaic virus (CsVMV) promoter. Plant Mol Biol 37:1055–1067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Daniel Stanton, EM Laboratory Manager, Citrus Research and Education Center for his assistance in sectioning transgenic Carrizo stem cross-sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dutt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutt, M., Erpen, L., Ananthakrishnan, G. et al. Comparative expression analysis of five caulimovirus promoters in citrus. Plant Cell Tiss Organ Cult 126, 229–238 (2016). https://doi.org/10.1007/s11240-016-0993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0993-6

Keywords

Navigation