Skip to main content
Log in

Paving the way for large-scale micropropagation of Juglans × intermedia using genetically identified hybrid seed

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This study provides a basic tool for the production of a multiclonal variety of Juglans nigra × J. regia hybrids (J. × intermedia), including optimized in vitro propagation methods and DNA-based techniques for the identification of hybrid seeds. Following identification of hybrid seed material using DNA markers embryo axes dissected from mature nuts were used as primary explants for establishing shoot cultures. The growth of shoot cultures of four hybrid genotypes was compared on two different basal media (Rugini and DKW) with three concentrations (2.2; 4.4; and 8.8 µM) of 6-benzylaminopurine (BA), and three gelling agents (Oxoid agar, Kobe agar, Gelrite). Three indole-3-butyric acid (IBA) concentrations (4, 12, and 20 µM) were compared for root induction, as well as three media for root expression. In general, the best combination of shoot elongation and production of new axillary shoots was achieved with 4.4 μM BA and 0.2 μM IBA in Rugini and in DKW medium. However, shoot elongation in most genotypes was favored when 2.2 μM BA and 0.2 μM IBA was used, in both, DKW and Rugini medium. The optimal gelling agent for Juglans hybrid shoot cultures was Kobe agar in Rugini medium. Highest rooting percentages were obtained on DKW medium with 12 µM IBA with 5 days in darkness followed by root expression under light on a mixture of gelified ¼ DKW medium and vermiculite. During acclimatization, more than 75 % of the plantlets continued to grow vigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbas E, Jay-Allemand C, Doumas P, Chaillou S, Cornu D (1993) Effects of gelling agents on growth, mineral composition and naphthoquinone content of in vitro explants of hybrid walnut tree (Juglans regia × Juglans nigra). Ann Sci For 50(2):177–186. doi:10.1051/forest:19930205

    Article  Google Scholar 

  • Beineke WF (1983) The genetic improvement of black walnut for timber production. In: Janick J (ed) Plant breeding reviews. The Avi Publishing Company, Inc., Westport, pp 236–266. doi:10.1007/978-1-4684-8896-8_8

  • Bosela MJ, Michler CH (2008) Media effects on black walnut (Juglans nigra L.) shoot culture growth in vitro evaluation of multiple nutrient formulation and cytokinin types. In Vitro Cell Dev Biol Plant 44(4):316–329. doi:10.1007/s11627-008-9114-5

    Article  CAS  Google Scholar 

  • Cheng TY (1975) Adventitious bud formation in culture of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Plant Sci Lett 5(2):97–102. doi:10.1016/0304-4211(75)90049-8

    Article  CAS  Google Scholar 

  • Cornu D, Jay-Allemand C (1989) Micropropagation of hybrid walnut trees (Juglans nigra × Juglans regia) through culture and multiplication of embryos. Ann Sci For 46:113s–116s. doi:10.1051/forest:19890523

    Article  Google Scholar 

  • Crow JF, Kimura M (1970) Introduction to population genetics theory. Harper and Row, New York, p 324

    Google Scholar 

  • Deng MD, Cornu D (1992) Maturation and germination of walnut somatic embryos. Plant Cell Tiss Org 28(2):195–202. doi:10.1007/bf00055517

    Article  Google Scholar 

  • Driver JA, Kuniyuki DH (1984) In vitro propagation of paradox walnut rootstocks. HortScience 18:506–509

    Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91(8):1253–1256. doi:10.1007/bf00220937

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Emilia M, Spada M, Beritognolo I, Cannata F (1995) Differentiation of walnut hybrids (Juglans nigra L. × Juglans regia L.) through RAPD markers. In: 3rd international walnut congress 442:43–52. doi:10.17660/actahortic.1997.442.4

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294x.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Fady B, Ducci F, Aleta N, Becquey J, Vazquez RD, Lopez FF, Rumpf H (2003) Walnut demonstrates strong genetic variability for adaptive and wood quality traits in a network of juvenile field tests across Europe. New For 25(3):211–225. doi:10.1023/A:1022939609548

    Article  Google Scholar 

  • Fornari B, Malvolti ME, Taurchini D, Fineschi S, Beritognolo I, Maccaglia E, Cannata F (1999) Isozyme and organellar DNA analysis of genetic diversity in natural/naturalised european and asiatic walnut (Juglans regia L.) populations. In: 4th international walnut symposium, vol 544, pp 167–178. doi:10.17660/actahortic.2001.544.2

  • Gamborg OL, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt K (1985) Development of a sterile cultivation system for rooting of shoot tip cultures (red raspberries) in duroplast foam. Plant Sci 39(2):141–148. doi:10.1016/0168-9452(85)90105-0

    Article  Google Scholar 

  • Gregorius HR (1978) The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math Biosci 41(3):253–271. doi:10.1016/0025-5564(78)90040-8

    Article  Google Scholar 

  • Hase A (1987) Changes in respiratory metabolism during callus growth and adventitious root formation in Jerusalem artichoke tuber tissues. Plant Cell Physiol 28(5):833–841

    Google Scholar 

  • Hedrick PW (2011) Genetics of populations. Jones & Bartlett, Boston

    Google Scholar 

  • Heile-Sudholt C, Huetteman CA, Preece JE, Van Sambeek JW, Gaffney GR (1986) In vitro embryonic axis and seedling shoot tip culture of Juglans nigra L. Plant Cell Tiss Org 6(2):189–197. doi:10.1007/bf00180804

    Article  Google Scholar 

  • Huang LC, Kohashi C, Vangundy R, Murashige T (1995) Effects of common components on hardness of culture media prepared with gelrite™. In Vitro Cell Dev Biol Plant 31(2):84–89. doi:10.1007/bf02632242

    Article  Google Scholar 

  • Hussendorfer E (1999) Identification of natural hybrids Juglans × intermedia Carr. using isoenzyme gene markers. Silvae Genet 48:50–52

    Google Scholar 

  • Jariteh M, Ebrahimzadeh H, Niknam V, Mirmasoumi M, Vahdati K (2015) Developmental changes of protein, proline and some antioxidant enzymes activities in somatic and zygotic embryos of Persian walnut (Juglans regia L.). Plant Cell Tiss Org Cult (PCTOC) 122(1):101–115. doi:10.1007/s11240-015-0753-z

    Article  CAS  Google Scholar 

  • Jay-Allemand C, Cornu D (1986) Culture in vitro d’embryons isolés de noyer commun (Juglans regia L.). Ann Sci For 43(2):189–198. doi:10.1051/forest:19860205

    Article  Google Scholar 

  • Jay-Allemand C, Drouet A, Ouaras A, Cornu D (1989) Polyphenolic and enzymatic characterization of ageing and rejuvenation of hybrid walnut trees (Juglans nigra × Juglans regia): relationship to growth. Ann Sci For 46:190s–193s. doi:10.1051/forest:19890544

    Article  Google Scholar 

  • Jay-Allemand C, Capelli P, Cornu D (1992) Root development of in vitro hybrid walnut microcuttings in a vermiculite-containing gelrite medium. Sci Hort 51(3):335–342. doi:10.1016/0304-4238(92)90132-v

    Article  Google Scholar 

  • Leslie C, McGranahan G (1992) Micropropagation of Persian walnut (Juglans regia L.) high-tech and micropropagation II. Springer, Berlin, pp 136–150. doi:10.1007/978-3-642-76422-6_7

    Book  Google Scholar 

  • McGranahan GH, Driver JA, Tulecke W (1987) Tissue culture of Juglans. Cell and tissue culture in forestry. Springer, Netherlands, pp 261–271. doi:10.1007/978-94-017-0992-7_19

    Book  Google Scholar 

  • McGranahan GH, Leslie CA, Uratsu SL, Martin LA, Dandekar AM (1988) Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Nat Biotechnol 6(7):800–804. doi:10.1038/nbt0788-800

    Article  CAS  Google Scholar 

  • Meier-Dinkel A, Wenzlitschke I (2016) Micropropagation of mature Juglans hybrids. In: 6th international symposium on production and establishment of micropropagated plants. Acta hortic

  • Mettendorf B (2008) Experiences in the cultivation of hybrid nuts. Mitt Forsch Waldökologie Forstwirtsch Rheinl Pfalz 66(08):61–72

    Google Scholar 

  • Meynier V, Arnould MF (1989) Compared effectiveness of antibiotic treatments and shoot tip culture on bacterial decontamination of an in vitro propagated clone of hybrid walnut (Juglans nigra × J. regia). Biol Plant 31(4):269–275. doi:10.1007/bf02907287

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Payghamzadeh K, Kazemitabar SK (2010) The effects of BAP, IBA and genotypes on in vitro germination of immature walnut embryos. Int J Plant Prod 4(4):309–322

    CAS  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi:10.1093/bioinformatics/bts460

    Article  Google Scholar 

  • Penuela R, Garavito C, Sanchez-Tames R, Rodriguez R (1987) Multiple shoot-bud stimulation and rhizogenesis induction of embryogenic and juvenile explants of walnut. In: International symposium on vegetative propagation of woody species, vol 227, pp 457–459. doi:10.17660/actahortic.1988.227.92

  • Pollegioni P, Woeste K, Major A, Scarascia Mugnozza G, Malvolti ME (2009) Characterization of Juglans nigra (L.), Juglans regia (L.) and Juglans × intermedia (Carr.) by SSR markers: a case study in Italy. Silvae Genet 58:68–78

    Google Scholar 

  • Pollegioni P, Woeste K, Mugnozza GS, Malvolti ME (2012) Retrospective identification of hybridogenic walnut plants by SSR fingerprinting and parentage analysis. Mol Breed 24(4):321–335. doi:10.1007/s11032-009-9294-7

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67(1):170–181. doi:10.1086/302959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rama P, Pontikis CA (1990) In vitro propagation of olive (Olea europea sativa L.) ‘Kalamon’. J Hortic Sci 65(3):347–353

    Article  CAS  Google Scholar 

  • Revilla MA, Majada J, Rodriguez R (1989) Walnut (Juglans regia L.) micropropagation. Ann Sci For 46:149–151. doi:10.1051/forest:19890533

    Article  Google Scholar 

  • Rodriguez R, Revilla A, Albuerne M, Perez C (1989) Walnut (Juglans spp.). In trees II. Springer, Berlin, pp 99–126. doi:10.1007/978-3-642-61535-1_7

    Book  Google Scholar 

  • Rugini E (1984) In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic 24(2):123–134. doi:10.1016/0304-4238(84)90143-2

    Article  CAS  Google Scholar 

  • Saadat YA, Hennerty MJ (2002) Factors affecting the shoot multiplication of Persian walnut (Juglans regia L.). Sci Hortic 95(3):251–260. doi:10.1016/s0304-4238(02)00003-1

    Article  CAS  Google Scholar 

  • Sánchez-Zamora MÁ, Cos-Terrer J, Frutos-Tomás D, García-López R (2006) Embryo germination and proliferation in vitro of Juglans regia L. Sci Hortic 108(3):317–321. doi:10.1016/j.scienta.2006.01.041

    Article  Google Scholar 

  • Scaltsoyiannes A, Tsoulpha P, Panetsos KP, Moulalis D (1998) Effect of genotype on micropropagation of walnut trees (Juglans regia). Silvae Genet 46:326–331

    Google Scholar 

  • Šedivá J, Vlašínová H, Mertelík J (2013) Shoot regeneration from various explants of horse chestnut (Aesculus hippocastanum L.). Sci Hortic 161:223–227. doi:10.1016/j.scienta.2013.06.030

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82(5):561–573. doi:10.1038/sj.hdy.6885180

    Article  PubMed  Google Scholar 

  • Vahdati K, Leslie C, Zamani Z, McGranahan G (2004) Rooting and acclimatization of in vitro-grown shoots from mature trees of three Persian walnut cultivars. HortScience 39(2):324–327

  • Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tiss Org Cult (PCTOC) 93(2):163–171. doi:10.1007/s11240-008-9355-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Government of Vietnam and NW-FVA (Northwest German Forest Research Institute) for Funding and providing facilities. We also thank Dr. Nguyen Van Thinh for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Tuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, P.N., Meier-Dinkel, A., Höltken, A.M. et al. Paving the way for large-scale micropropagation of Juglans × intermedia using genetically identified hybrid seed. Plant Cell Tiss Organ Cult 126, 153–166 (2016). https://doi.org/10.1007/s11240-016-0986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0986-5

Keywords

Navigation