Skip to main content
Log in

A reliable and high-efficiency Agrobacterium tumefaciens-mediated transformation system of Pogonatherum paniceum embryogenic callus using GFP as a reporter gene

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Pogonatherum paniceum (Lam.) Hack, a perennial turfgrass, is important in ecological restoration and landscape construction because of its strong root system and attractive appearance. In this paper, we report the establishment of Agrobacterium tumefaciens-mediated transformation of P. paniceum embryogenic callus (EC) using a high-frequency regeneration system. We also optimised the transformation conditions, such as sub-culture and pre-culture of EC, Agrobacterium concentration, infection time, acetosyringone (AS) concentration, co-cultivation duration, bacteriostatic antibiotics, spectinomycin concentration, washing solutions and selection schemes, based on the transformation efficiency evaluated by green fluorescent protein (GFP) visual analysis, callus survival rate and differentiation rate. The optimal solution was prepared under the following conditions: EC was sub-cultured three times and pre-cultured for 4 days prior to transformation, Agrobacterium concentration of OD600 = 0.6, infection time of 10 min, AS concentration of 40 mg/L, co-cultivation duration of 3 days, washing with liquid washing medium plus 250 mg/L cefotaxime, selection with 300 mg/L cefotaxime and 150 mg/L spectinomycin for 2 or 4 weeks of callus selection, 4 or 2 weeks of differentiation selection and 2 weeks of rooting selection. In the optimised transformation system, the transformation efficiency reached nearly 70 %. PCR and liquid Southern hybridization demonstrated the stable integration of the gfp gene into the P. paniceum genome, GFP visual analysis and RT-PCR confirmed gfp gene expression. This reliable and high-efficiency A. tumefaciens-mediated transformation system lays the foundation for genetic improvement and functional gene research of P. paniceum and improves the application of P. paniceum in ecological restoration and landscape construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EC:

Embryogenic callus

MS:

Murashige and Skoog medium

CaMV 35S:

Cauliflower mosaic virus 35S promoter

NAA:

α-Naphthaleneacetic acid

2, 4-D:

2,4-Dichlorophenoxyacetic acid

GFP:

Green fluorescent protein

AS:

Acetosyringone

Spc:

Spectinomycin

Cef:

Cefotaxime

Crb:

Carbenicillin

References

  • Agrasar ZER, Puglia ML (2004) Ornamental grasses in Argentina: introduction and cultivation of native and exotic species. BG J 1:22–23

    Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Anisuzzaman M, Alam MF, Yoon HS, Choi MS, Yang JK, Lee BH (2007) The effects of wounding type, preculture, infection method and cocultivation temperature on the Agrobacterium-mediated gene transfer in tomatoes. Ann Appl Biol 151:363–372

    Article  CAS  Google Scholar 

  • Bai J, Luo C, Li X, Cong Y (2005) The research of drought resistance about two wild rock-plant. J Sichun Agric Univ 23:290–294

    Google Scholar 

  • Cardoza V, Stewart CN Jr (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604

    CAS  PubMed  Google Scholar 

  • Chen H, Wang H (2004) Differentiation of population steucture of Pogonatherum paniceum on different substrates. J Southwest Agric Univ 4(26):448–451

    Google Scholar 

  • Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng M, Lowe B, Spencer T, Ye X, Armstrong C (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev-Plant 40:31–45

    Article  Google Scholar 

  • Clayton WD, Harman KT, Williamson H (2002) World grass species: descriptions, identification, and information retrieval. http://www.kew.org/data/grasses-db.html. Accessed 18 December 2006; 17:10 GMT

  • Danilova SA, Dolgikh YI (2004) The stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture. Russ J Plant Physiol 51:559–562

    Article  CAS  Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Gurel S, Gurel E, Miller TI, Lemaux PG (2012) Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos. Methods Mol Biol 847:109–122

    Article  CAS  PubMed  Google Scholar 

  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herath SP, Suzuki T, Hattori K (2005) Factors influencing Agrobacterium mediated genetic transformation of kenaf. Plant Cell, Tissue Organ Cult 82:201–206

    Article  CAS  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  CAS  PubMed  Google Scholar 

  • Humara JM, Ordás RJ (1999) The toxicity of antibiotics and herbicides on in vitro adventitious shoot formation of Pinus pinea L. cotyledons. In Vitro Cell Dev-Plant 35:339–343

    Article  CAS  Google Scholar 

  • Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li R, Fei S, Qu R (2005) Agrobacterium-mediated transformation of common bermudagrass (Cynodon dactylon). Plant Cell, Tissue Organ Cult 83:223–229

    Article  Google Scholar 

  • Luo H, Hu Q, Nelson K, Longo C, Kausch AP, Chandlee JM, Wipff JK, Fricker CR (2004) Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Rep 22:645–652

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Zhuang G, Ma D, Chen F (2010) Genetic diversity of Pogonatherum paniceum (Lam.) Hack in Southwest China revealed by ISSR. Afr J Biotechnol 9:1416–1422

    CAS  Google Scholar 

  • Mao Q, Geng T, Wang S (2014) A simple solution hybridization rapidly detects DNA by fluorescent probe. Spectrosc Spect Anal 34(6):1577–1581

    CAS  Google Scholar 

  • Mariashibu TS, Subramanyam K, Arun M, Mayavan S, Rajesh M, Theboral J, Manickavasagam M, Ganapathi A (2013) Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiol Plant 35:41–54

    Article  CAS  Google Scholar 

  • Mathias RJ, Boyd LA (1986) Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L em. thell). Plant Sci 46:217–223

    Article  CAS  Google Scholar 

  • Mathias RJ, Mukasa C (1987) The effect of cefotaxime on the growth and regeneration of callus from four varieties of barley (Hordeum vulgare L.). Plant Cell Rep 6:454–457

    CAS  PubMed  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Dev GK, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annul Rev Plant Biol 61:443–462

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

  • Ozawa K (2012) A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Methods Mol Biol 847:51–57

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Wei S, Yuan X, Cao S (2009) Mechanisms of the removal and remediation of phenanthrene and pyrene in soil by Pogonatherum paniceum. Environ Sci 5(30):1273–1279

    Google Scholar 

  • Patel M, Dewey RE, Qu R (2013) Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell, Tissue Organ Cult 114:19–29

    Article  CAS  Google Scholar 

  • Peng L, Li S, Wang H (2004) Distribution patterns and interspecific association of Pogonatherum paniceum population. J Southwest Agric Univ 6(26):689–692

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Lab Press, New York

    Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  CAS  PubMed  Google Scholar 

  • Shackelford NJ, Chlan CA (1996) Identification of antibiotics that are effective in eliminating Agrobacterium tumefaciens. Plant Mol Biol Rep 14:50–57

    Article  CAS  Google Scholar 

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell, Tissue Organ Cult 105:93–104

    Article  CAS  Google Scholar 

  • Shrawat AK, Becker D, Lörz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci 172:281–290

    Article  CAS  Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Article  Google Scholar 

  • Thakur AK, Chauhan DK, Parmar N, Verma V (2012) Role of genetic engineering in horticultural crop improvement-a review. Agric Rev 33:248–255

    Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Wang ZY, Ge Y (2005) Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). J Plant Physiol 162:103–113

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev-Plant 42:1–18

    Article  Google Scholar 

  • Wang C, Wei Z (2008) Factors influencing transformation of Wheat (Triticum aestivum L.) immature embryos mediated by Agrobacterium tumefaciens. J Plant Physiol Mol Biol 6:521–529

    Google Scholar 

  • Wang H, Peng L, Li S, Bai B (2005) Growth characteristics of rock plant Pogonatherum paniceum. Chin J Appl Ecol 8(16):1432–1436

    Google Scholar 

  • Wang W, Wang S, Zhuang G, Chen F (2006) In vitro rapid propagation of rock plant pogonatherum paniceum (Lam.) hack. Plant Physiol Commun 3(42):482

    Google Scholar 

  • Wang W, Wang S, Wu X, Jin X, Chen F (2007a) High frequency plantlet regeneration from callus and artificial seed production of rock plant Pogonatherum paniceum (Lam.) Hack. (Poaceae). Sci Hortic 113:196–201

    Article  CAS  Google Scholar 

  • Wang W, Zhao X, Wang S, Chen F (2007b) Effect of polyethylene glycol on the regeneration of the callus of Pogonatherum paniceum under different culture conditions. Chin J Biotechnol 2(23):337–342

    Google Scholar 

  • Wang W, Zhao X, Zhuang G, Wang S, Chen F (2008) Simple hormonal regulation of somatic embryogenesis and/or shoot organogenesis in caryopsis cultures ofPogonatherum paniceum (Poaceae). Plant Cell, Tissue Organ Cult 95:57–67

    Article  CAS  Google Scholar 

  • Wang W, Li R, Wang S, Chen F (2010) GIS-Based analysis on suitable distribution area and habitat of Pogonatherum paniceum, a plant for soil and water conservation. Soil Water Conserv China 6:33–35

    Google Scholar 

  • Weber E, Sun S, Li B (2008) Invasive alien plants in China: diversity and ecological insights. Biol Invasions 10:1411–1429

    Article  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    CAS  PubMed  Google Scholar 

  • Yepes LM, Aldwinekle HS (1994) Factors that effect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell, Tissue Organ Cult 37:257–269

    CAS  Google Scholar 

  • Yu TT, Skinner DZ, Liang GH, Trick HN, Huang B, Muthukrishnan S (2000) Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133:229–233

    Article  CAS  PubMed  Google Scholar 

  • Zhan C, Mao Q, Wang SH, Chen F (2013) Fast detection of specific DNA by liquid hybridization. China Biotechnol 33(7):64–70

    CAS  Google Scholar 

  • Zhao S, Ruan Y, Sun H, Wang B (2008) Highly efficient Agrobacterium-based transformation system for callus cells of the C3 halophyte Suaeda salsa. Acta Physiol Plant 30:729–736

    Article  Google Scholar 

  • Zhuang G, Ma D, Wang W, Wang S, Chen F (2009) Genetic diversity of Pogonatherum paniceum (Lam.) Hack. in Southwest China revealed by AFLP markers. Afr J Biotechnol 8(7):1226–1232

    CAS  Google Scholar 

  • Zuo Y, Li S, Yang Z, Zhou J (2006) Growth of rock plant Pogonatherum paniceum under different soil moisture content. J Sichuan Univ (Natl Sci Edition) 5(43):1142–1145

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by Natural Science Foundation of China (NO.31070276 and 31270360). The authors thank Dr. Rui Li for critical reading of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, M., Zhan, C. et al. A reliable and high-efficiency Agrobacterium tumefaciens-mediated transformation system of Pogonatherum paniceum embryogenic callus using GFP as a reporter gene. Plant Cell Tiss Organ Cult 120, 155–165 (2015). https://doi.org/10.1007/s11240-014-0589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0589-y

Keywords

Navigation