Skip to main content
Log in

Efficient Agrobacterium transformation of elite wheat germplasm without selection

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A previously reported Agrobacterium tumefaciens transformation system that transformed wheat cultivar Fielder at high efficiency was shown to also transform eight out of nine Triticum aestivum (hexaploid wheat) cultivars tested and two Triticum turgidum (durum wheat) cultivars. Transformation efficiencies of these wheat lines ranged from 1.5 to 51 %. Included amongst this germplasm were elite Australian hexaploid wheat cultivars that are currently in commercial cultivation and two of these cultivars, Gladius and Westonia, were transformed at 32 and 45 % efficiency, respectively. Similar high transformation efficiencies were observed for durum wheat cultivars Kronos (51 %) and Stewart (26 %). This highly efficient transformation system was used to generate transgenic plants in the absence of selection and high heritability of unselected transgenes was observed. Selectable marker free transgenic wheat plants were produced at 3 % efficiency. These data demonstrate highly efficient Agrobacterium transformation of diverse wheat germplasm, including elite cultivars, which enables routine production of selectable marker free transgenics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayliffe MA, Collins NC, Ellis JG, Pryor A (2000) The maize rp1 rust resistance gene identifies homologues in barley that have been subjected to diversifying selection. Theor Appl Genet 100:1144–1154. doi:10.1007/s001220051398

    Article  CAS  Google Scholar 

  • Ayliffe MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64:329–347. doi:10.1007/s11103-007-9157-8

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Dubcovsky J (2012) Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. doi:10.1371/journal.pgen.1003134

    Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Phys 115:971–980. doi: 10.1104/pp.115.3.971

  • Cheng M, Hu T, Layton J, Liu C-N, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol 39:595–604. doi:10.1079/IVP2003471

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplast by electroporation. Plant Mol Biol 18:675–689

    Article  CAS  PubMed  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci 88:10558–10562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90. doi:10.1002/biot.200600182

    Article  CAS  PubMed  Google Scholar 

  • de Vetten N, Wolters A-M, Raemakers K, van der Meer I, ter Stege Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442. doi:10.1038/nbt801

    Article  PubMed  Google Scholar 

  • DeBlock M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    CAS  Google Scholar 

  • Ding L, Li S, Gao J, Wang Y, Yang G, He G (2009) Optimization of Agrobacterium-mediated conditions in mature embryos of elite wheat. Mol Biol Rep 36:29–36. doi:10.1007/s11033-007-9148-5

    Article  CAS  PubMed  Google Scholar 

  • Doshi KM, Eudes F, Laoche A, Gaudet D (2007) Anthocyanin expression in marker free transgenic wheat and triticale embryos. In Vitro Cell Dev Biol Plant 43:429–435. doi:10.1007/s11627-007-9089-7

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci 94:2117–2121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360. doi:10.1126/science.1166289

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl AE, Blanco A (2008) A transgenic durum wheat line that is free of marker genes and expresses 1Dy10. J Cereal Sci 48:439–445. doi:10.1016/j.jcs.2007.11.005

    Article  CAS  Google Scholar 

  • Garci-Almodovar RC, Petri C, Padilla IMG, Burgos L (2014) Combination of site-specific recombination and a conditional selective marker gene allows for the production of marker-free tobacco plants. Plant Cell Tiss Organ Cult 1116:205–215. doi:10.1007/s11240-013-0396-x

    Article  Google Scholar 

  • Garfinkel M, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumourigenesis and octopine catabolism. J Bacteriol 144:732–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giancaspro A, Rosellini D, Blanco A, Gadalet A (2012) Gabaculine selection using bacterial and plant marker genes (GSA-AT) in durum wheat transformation. Plant Cell Tiss Organ Cult 109:447–455. doi:10.1007/s11240-011-0109-2

    Article  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of Cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  CAS  PubMed  Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol Biol 37:287–296

    Article  CAS  PubMed  Google Scholar 

  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581. doi:10.1093/jxb/erq035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J (2009) Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley wheat, triticale and maize. Int J Plant Genomics. article ID 835608. doi:10.1155/2009/835608

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum) using glyphosate selection. Plant Cell Rep 21:1010–1019. doi:10.1007/s00299-003-0617-6

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Sparks CA, Jones HD (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breed 18:195–208. doi:10.1007/s11032-006-9027-0

    Article  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida Y, Tsunashima M, Hiei Y, Komari T (2014) Wheat (Triticum aestivum L.). In: Wang K (ed) Methods in molecular biology, Agrobacterium protocols, 3rd edn. Springer, New York

  • Jen GC, Chilton M-D (1986) Activity of T-DNA borders in plant cell transformation by mini-T plasmids. J Bacteriol 166:491–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia H, Yu J, Yi D, Cheng Y, Xu W, Zhang L, Ma Z (2009) Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell Tiss Organ Cult 97:159–165. doi:10.1007/s11240-009-9510-5

    Article  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5. doi:10.1186/1746-4811-1-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine supplemented regeneration medium. Plant Cell Rep 21:429–436. doi:10.1007/s00299-002-0529-x

    CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174. doi:10.1046/j.1365-313X.1996.10010165.x

    Article  CAS  PubMed  Google Scholar 

  • Lu H-J, Zhou XR, Gong Z-X, Upadhyaya NM (2001) Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors. Aust J Plant Physiol 28:241–248. doi:10.1071/PP00129

    CAS  Google Scholar 

  • Maas C, Simpson CG, Eckes P, Schickler H, Brown JWS, Reiss B, Salchert K, Chet I, Schell J, Reichel C (1997) Expression of intron modified NPTII genes in monocotyledonous and dicotyledonous plant cells. Mol Breed 3:15–28

    Article  CAS  Google Scholar 

  • Matthews PR, Wang M-B, Waterhouse PM, Thorton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a B-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Ow D (2007) GM maize from site-specific recombination technology, what next? Curr Opinion Biotechnol 18:115–120. doi:10.1016/j.copbio.2007.02.004

    Article  CAS  Google Scholar 

  • Patnaik D, Vishnudasan D, Khurana P (2006) Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Current Sci 91:307–317

    CAS  Google Scholar 

  • Pellergrineschi A, Noquera LM, Skovmand B, Brito RM, Velazquez L, Salqado MM, Hernandez R, Warbuton M, Hoisinqton D (2002) Identification of a highly transformable wheat genotype for mass production of fertile transgenic plants. Genome 45:421–430. doi:10.1139/g01-154

    Article  Google Scholar 

  • Puchta H (2003) Marker-free transgenic plants. Plant Cell Organ Tiss Cult 74:123–134

    Article  CAS  Google Scholar 

  • Righetti L, Djennane S, Berthelot P, Cournol R, Wilmot N, Loridon K, Vergne E, Chevreau E (2014) Elimination of the nptII marker gene in transgenic apple and pear with a chemically inducible R/Rs recombinase. Plant Cell Tiss Organ Cult 117:335–348. doi:10.1007/s11240-014-0443-2

    Article  CAS  Google Scholar 

  • Risacher T, Craze M, Bowden S, Paul W, Barsby T (2009) Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. In: Jones HW, Shewry PR (eds) Methods in molecular biology, transgenic wheat, barley and oats, vol 478. Humana Press, New York. doi: 10.1007/978-1-59745-379-0_7

  • Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    CAS  PubMed  Google Scholar 

  • Stoykova P, Stoeva-Popova P (2011) PMI (manA) as a nonantibiotic selectable marker gene in plant biotechnology. Plant Cell Tiss Organ Cult 105:141–148. doi:10.1007/s11240-010-9858-6

    Article  CAS  Google Scholar 

  • Straub A, LaHaye T (2013) Zinc fingers, TAL effectors or Cas9-based DNA binding proteins: what’s best for targeting desired genome loci? Mol Plant 6:1384–1387. doi:10.1093/mp/sst075

    Article  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22:461–469. doi:10.1046/j.1365-313X.2000.00745.x

    Article  CAS  PubMed  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789. doi:10.1007/s00299-004-0892-x

    Article  CAS  PubMed  Google Scholar 

  • Vain P, Thole V (2009) Gene insertion patterns and sites. In: Jones HD, Shewry PR (eds) Methods in molecular biology, transgenic, wheat, barley and oats, vol 478. Humana Press, New York, pp 203–226. doi:10.1007/978-1-59745-379-0_13

  • Wang M-B, Upadhyaya NM, Brettell RIS, Waterhouse PM (1997) Intron-mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J Genet Breed 51:325–334

    CAS  Google Scholar 

  • Wang M-B, Li Z-Y, Matthews PR, Upadhyaya NM, Waterhouse PM (1998) Improved vectors for Agrobacterium tumefaciens-mediated transformation of monocot plants. Acta Horticulture 461:401–407 http://www.actahort.org/books/461/461_46.htm

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of a selectable marker gene from transgenic plants by the Cre/lox site specific recombination system. Transgenic Res 14:605–614. doi:10.1007/s11248-005-0884-9

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yau Y-Y, Perkins-Baulding D, Thomson JG (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285. doi:10.1007/s00299-010-0938-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weir B, Gu X, Wang MB, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818. doi:10.1071/PP99211

    CAS  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668. doi:10.1007/s00299-002-0564-7

    CAS  PubMed  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber CM (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28:903–913. doi:10.1007/s00299-009-0696-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao T-J, Zhao S-Y, Chen H-M, Zhao Q-Z, Hu Z-M, Hou B-K, Xia G-M (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedlings. Plant Cell Rep 25:1199-1204. doi:10.1007/s00299-006-0184-8

Download references

Acknowledgments

We wish to acknowledge Smitha Louis and Dhara Bhatt for their tissue culture skills and Soma Chakraborti for technical support. We thank Professor J Dubcovsky for providing a Yr36 clone. In addition, we wish to acknowledge the invaluable training we received at Japan Tobacco laboratories in the “Purewheat” transformation procedure which enabled us to rapidly establish this procedure in our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ayliffe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, T., Thistleton, J., Higgins, T.J. et al. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tiss Organ Cult 119, 647–659 (2014). https://doi.org/10.1007/s11240-014-0564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0564-7

Keywords

Navigation