Skip to main content
Log in

Functional characterization of the pathogenesis-related protein family 10 gene, PgPR10-4, from Panax ginseng in response to environmental stresses

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Pathogenesis-related proteins (PRs) are known to function in higher plants as a protein-based defensive system against abiotic and biotic stress, particularly pathogen infections. A full-length cDNA sequence of PR BetV1 was isolated and characterized from a 14-year-old ginseng expressed sequence tags library and we named this as PgPR10-4, because of similar identities with previous isolated PgPR10s sequences. The PgPR10-4 gene encodes a 477 bp open reading frame and its deduced protein contains 158 amino acids with a 53 % identity with that of the Actinidia chinensis BetV1 allergen. The expression of PgPR10-4 gene was abundant in leaves and its transcripts showed differentially up-regulated patterns against several ginseng pathogens and abiotic stimuli such as high light and salinity. In addition, PgPR10-4 expression was strongly responsive towards the stress signaling molecules H2O2 and jasmonic acid (JA), while weekly responsive to salicylic acid and abscisic acid. A functional role of PgPR10-4 in environmental stress tolerance was further validated through its overexpression in Arabidopsis. An analysis of T2 transgenic Arabidopsis plants overexpressing the PgPR10-4 gene showed an enhanced tolerance to bacterial and fungal infection, but not to salt stress. When we tagged with cyan fluorescent protein fusion protein, the PgPR10-4-was found to localize to the cytoplasm. The enhanced antifungal activity observed from the Arabidopsis transgenic lines suggests the possible involvement of PgPR10-4 in a defense-related mechanism via the JA signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

EST:

Expressed sequence tag

ORF:

Open reading frame

PR:

Pathogenesis-related

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

H2O2 :

Hydrogen peroxide

JA:

Jasmonic acid

SA:

Salicylic acid

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucl Acids Res 37:202–208

    Article  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. In: Martinez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana, Totowa, pp 259–266

    Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Breiteneder H, Ebner C (2000) Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol 106:27–36

    Article  CAS  PubMed  Google Scholar 

  • Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenbach M (1989) The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J 8:1935–1938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chadha P, Das RH (2006) A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity. Planta 225:213–222

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang S, Illa E, Song L, Wu S, Howad W, Arús P, van de Weg E, Chen K, Gao Z (2008) Genomic characterization of putative allergen genes in peach/almond and their synteny with apple. BMC Genomics 9:543

    Article  PubMed Central  PubMed  Google Scholar 

  • Elad Y (1997) Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biol Rev Camb Philos Soc 72:381–422

    Article  Google Scholar 

  • Fristensky B, Horovitz D, Hadwiger LA (1998) cDNA sequences for pea disease resistance response genes. Plant Mol Biol 11:713–715

    Article  Google Scholar 

  • Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 109(31):12811–12816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gajhede M, Osmark P, Poulsen FE, Ipsen H, Larsen JN, van Neerven RJJ, Schou C, Lowenstein H, Spangfort MD (1996) X-ray and NMR structure of Betv1, the origin of birch pollen allergy. Nat Struct Biol 3:1040–1045

    Article  CAS  PubMed  Google Scholar 

  • Gao ZS, Van De Weg WE, Schaart JG, Arkel G, Breiteneder H, Hoffmann-Sommergruber K, Gilissen LJ (2005) Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin). Theor Appl Genet 111:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45:550–559

    CAS  PubMed  Google Scholar 

  • Huang JC, Chang FC, Wang Cs (1997) Characterization of a lily tapetal transcript that shares sequence similarity with a class of intracellular pathogenesis-related (IPR) proteins. Plant Mol Biol 24:681–686

    Article  Google Scholar 

  • Jain S, Kumar D, Jain M, Chaudhary P, Deswal R, Sarin NB (2012) Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco. Plant Cell Tiss Organ Cult 109:19–31

    Article  CAS  Google Scholar 

  • Jwa NS, Kumar Agrawal G, Rakwal R, Park CH, Prasad Agrawal V (2001) Molecular cloning and characterization of a novel Jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem Biophys Res Commun 286:973–983

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Lee OR, Lee SY, Kim KT, Yang DC (2012) Isolation and characterization of a theta glutathione s-transferase gene from Panax ginseng Meyer. J Ginseng Res 36:449–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koistinen KM, Hassinen VH, Gynther PAM, Lehesranta SJ, Keinanen SI, Kokko HI, Oksanen EJ, Tervahauta AI, Auriola S, Karenlampi SO (2002) Birch PR-10c is induced by factors causing oxidative stress but appears not to confer tolerance to these agents. New Phytol 155:381–391

    Article  CAS  Google Scholar 

  • Koistinen KM, Soininen P, Venäläinen TA, Häyrinen J, Laatikainen R, Peräkylä M, Tervahauta AI, Kärenlampi SO (2005) Birch PR-10c interacts with several biologically important ligands. Phytochemistry 66:2524–2533

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Laxalt AM, Munnik T (2002) Phospholipid signaling in plant defence. Curr Opin Plant Biol 5:332–338

    Article  CAS  PubMed  Google Scholar 

  • Lebel S, Schellenbaum P, Walter B, Maillot P (2010) Characterisation of the Vitis vinifera PR10 multigene family. BMC Plant Biol 10:184

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee OR, Sathiyaraj G, Kim YJ, In JG, Kwon WS, Kim JH, Yang DC (2011) Defense genes induced by pathogens and abiotic stresses in Panax ginseng C. A. Meyer. J Ginseng Res 35(1):1–11

    Article  CAS  Google Scholar 

  • Lee OR, Pulla RK, Kim YJ, Balusamy SRD, Yang DC (2012a) Expression and stress tolerance of PR10 genes from Panax ginseng C. A Meyer. Mol Biol Rep 39:2365–2374

    Article  CAS  PubMed  Google Scholar 

  • Lee OR, Kim YJ, Balusamy SRD, Khorolragchaa A, Sathiyaraj G, Kim MK, Yang DC (2012b) Expression of the ginseng PgPR10-1 in Arabidopsis confers resistance against fungal and bacterial infection. Gene 506:85–92

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  • Liu X, Huang B, Lin J, Fei J, Chen Z, Pang Y, Sun X, Tang K (2006) A novel pathogenesis related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress- and pathogen inducible. J Plant Physiol 163:546–556

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J 29:257–268

    Article  CAS  PubMed  Google Scholar 

  • Mogensen JE, Wimmer R, Larsen JN, Spangfort MD, Otzen DE (2002) The major birch allergen, Betv1, shows affinity for a broad spectrum of physiological ligands. J Biol Chem 277:23684–23692

    Article  CAS  PubMed  Google Scholar 

  • Moiseyev GP, Beintema JJ, Fedoreyeva LI, Yakovlev GE (1994) High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonuclease. Planta 193:470–472

    Article  CAS  PubMed  Google Scholar 

  • Moiseyev GP, Fedoreyeva LI, Zhuravlev YN, Yasnetslaya E, Jekel PA, Beintema JJ (1997) Primary structures of two ribonucleases from ginseng calluses new members of the PR-10 family of intracellular pathogenesis-related plant proteins. FEEB Lett 407:207–210

    Article  CAS  Google Scholar 

  • Odjakova M, Hadjiivanova C (2001) The complexity of pathogen defense in plants. Bulg J Plant Physiol 27:101–109

    CAS  Google Scholar 

  • Perfect SE, Hughes HB, O’Connell RJ, Green JR (1999) Colletotrichum: a model genus for studies on pathology and fungal-plant interactions. Fungal Genet Biol 27(2–3):98–186

    Google Scholar 

  • Poupard P, Strullu DG, Simoneau P (1998) Two members of the Betv1 gene family encoding birch pathogenesis-related proteins display different patterns of root expression and wound-inducibility. Funct Plant Biol 25:459–464

    CAS  Google Scholar 

  • Pulla RK, Lee OR, In JG, Kim YJ, Senthil K, Yang DC (2010) Expression and functional characterization of pathogenesis-related protein family 10 gene, PgPR10-2, from Panax ginseng C.A Meyer. Physiol Mol Plant Pathol 74:323–329

    Article  CAS  Google Scholar 

  • Quirino BF, Bent AF (2003) Deciphering host resistance and pathogen virulence: the Arabidopsis/Pseudomonas interaction as a model. Mol Plant Pathol 4:517–530

    Article  CAS  PubMed  Google Scholar 

  • Radauer C, Lackner P, Breiteneder H (2008) The Betv1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286

    Article  PubMed Central  PubMed  Google Scholar 

  • Rigden J, Coutts R (1988) Pathogenesis-related proteins in plants. Trends Genet 4:87–89

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop: a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  PubMed  Google Scholar 

  • Schenk M, Cordewener J, America A, van’t Westende W, Smulders M, Gilissen L (2009) Characterization of PR-10 genes from eight Betula species and detection of Betv1 isoforms in birch pollen. BMC Plant Biol 9:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    CAS  PubMed  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M, Komano T, Endo A, Okamoto T, Jikumaru Y, Kamiya Y, Terakawa T, Koshiba T (2011) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52:1686–1696

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tewari S, Brown SM, Kenyon P, Balcerzak M, Fristensky B (2003) Plant defense multigene families: II Evolution of coding sequence and differential expression of PR10 genes in Pisum. arXiv preprint q-bio/0310038

  • Utriainen M, Kokko H, Auriola S, Sarrazin O, Kärenlampi S (1998) PR-10 protein is induced by copper stress in roots and leaves of a Cu/Zn tolerant clone of birch, Betula pendula. Plant Cell Environ 21:821–828

    Article  CAS  Google Scholar 

  • van de Löcht U, Meier I, Hahlbrock K, Somssich IE (1990) A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO J 9:2945–2950

    PubMed Central  PubMed  Google Scholar 

  • Van Loon LC, Van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. Samsun and Samsun NN. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40:199–211

    Article  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The family of pathogenesis-related proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendation for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:245–264

    Article  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense related proteins in infected plants. Ann Rev Phytopathol 44:1–28

    Article  Google Scholar 

  • Walter MH, Liu JW, Wuun J, Hess D (1996) Bean ribonuclease-like pathogenesis-related protein genes (Ypr 10) display complex patterns of developmental, dark-indiced and exogenous-stimulus-dependent expression. Eur J Biochem 239:281–293

    Article  CAS  PubMed  Google Scholar 

  • Wang CS, Huang JC, Hu JH (1999) Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol Biol 40:807–814

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Vanek-Krebitz M, Hoffmann-Sommergruber K, Scheiner O, Breiteneder H (1997) The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol Phylogenet Evol 8:317–333

    Article  CAS  PubMed  Google Scholar 

  • Xie YR, Chen ZY, Brown RL, Bhatnagar D (2010) Expression and functional characterization of two pathogenesis-related protein10 genes from Zea mays. J Plant Physiol 167:121–130

    Article  CAS  PubMed  Google Scholar 

  • Zhou XJ, Lu S, Xu YH, Chen XY, Wang JW (2002) A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Sci 162:629–636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by iPET (112142-05-1-CG000), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2014_505_MOESM1_ESM.docx

Nucleotide and deduced amino acid sequence of PgPR10-4 isolated from P. ginseng. The deduced amino acid sequence is shown as a single-letter code below the nucleotide sequence. The position of the nucleotides is shown on the right. Two black boxes show the transcription start codon (ATG) and termination codon (TAA), respectively. (DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YJ., Jang, MG., Lee, HJ. et al. Functional characterization of the pathogenesis-related protein family 10 gene, PgPR10-4, from Panax ginseng in response to environmental stresses. Plant Cell Tiss Organ Cult 118, 531–543 (2014). https://doi.org/10.1007/s11240-014-0505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0505-5

Keywords

Navigation