Skip to main content
Log in

Over-expression of ArathEULS3 confers ABA sensitivity and drought tolerance in Arabidopsis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) is an important phytohormone involved in the regulation of plant growth, development and adaption to various environmental challenges. Regulatory component of ABA receptor 1 (RCAR1, also known as PYL9) acts as a newly discovered ABA receptor in Arabidopsis. To identify interacting partners of RCAR1, we have carried out a yeast two-hybrid screen. One protein was identified, ArathEULS3, which belongs to the Euonymus europaeus lectin (EUL) family of plant lectins. The interaction between RCAR1 and ArathEULS3 was confirmed by GST pull-down assay. Transient expression of RCAR1-EGFP and ArathEULS3-EGFP in Arabidopsis protoplasts revealed that both proteins were mainly expressed in cytoplasm and nucleus. Real time qRT-PCR analysis showed that over-expression of RCAR1 increased the expression of ArathEULS3. Furthermore, up-regulating ArathEULS3 in Arabidopsis conferred ABA hypersensitivity during post-germination growth and enhanced drought tolerance, but did not affect the expression of RD29B, RAB18 and RD29A (ABA- and drought-responsive genes). Previously, ArathEULS3 was shown as a carbohydrate-binding plant lectin. Thus, our results reveal a direct connection between abiotic stress responses and plant lectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CPK3:

Calcium dependent protein kinase 3

ABAR:

Abscisic acid receptor

CHLH:

Mg-chelatase H subunit

PYR:

Pyrabactin resistance

PYL:

PYR1-like

ABI1:

ABA-insensitive 1

ABI2:

ABA-insensitive 2

SnRK2.6:

SNF1-related protein kinase 2.6

ABF2:

ABRE-binding factor 2

AREB1:

ABA-responsive element binding protein 1

LD-PCR:

Long-distance PCR

PP2C:

Type 2C protein phosphatase

DAPI:

4′,6-Diamidino-2-phenylindole

References

  • Babosha A (2008) Inducible lectins and plant resistance to pathogens and abiotic stress. Biochemistry (Mosco) 73(7):812–825

    Article  CAS  Google Scholar 

  • Berendzen KW, Böhmer M, Wallmeroth N, Peter S, Vesić M, Zhou Y, Tiesler FK, Schleifenbaum F, Harter K (2012) Screening for in planta protein–protein interactions combining bimolecular fluorescence complementation with flow cytometry. Plant Methods 8(1):25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52(2):223–239

    Article  CAS  PubMed  Google Scholar 

  • Chien C-T, Bartel PL, Sternglanz R, Fields S (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88(21):9578–9582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chrispeels MJ, Raikhel NV (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3(1):1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Cummins W, Kende H, Raschke K (1971) Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99(4):347–351

    Article  CAS  PubMed  Google Scholar 

  • Cutler A (2005) Understanding abscisic acid. J Plant Growth Regul 24(4):251–252

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl 1):S15–S45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fouquaert E, Van Damme EJ (2012) Promiscuity of the Euonymus carbohydrate-binding domain. Biomolecules 2(4):415–434

    Article  CAS  Google Scholar 

  • Fouquaert E, Peumans WJ, Smith DF, Proost P, Savvides SN, Van Damme EJ (2008) The “old” Euonymus europaeus agglutinin represents a novel family of ubiquitous plant proteins. Plant Physiol 147(3):1316–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fouquaert E, Peumans W, Vandekerckhove T, Ongenaert M, Van Damme E (2009) Proteins with an Euonymus lectin-like domain are ubiquitous in Embryophyta. BMC Plant Biol 9(1):136

    Article  PubMed Central  PubMed  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462(7273):660–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao F, Xiong A, Peng R, Jin X, Xu J, Zhu B, Chen J, Yao Q (2010) OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tiss Org 100(3):255–262

    Google Scholar 

  • Goyal K, Walton L, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong J-J (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146(2):623–635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SnRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44(6):939–949

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Yoon H-J, Terzaghi W, Martinez C, Dai M, Li J, Byun M-O, Deng XW (2010) DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22(6):1716–1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris P-C, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264(5164):1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32(3):317–328

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068

    CAS  PubMed  Google Scholar 

  • Mansfield T (1976) Chemical control of stomatal movements. Philos T R Soc B 273:541–550

  • Melcher K, Ng L-M, Zhou XE, Soon F-F, Xu Y, Suino-Powell KM, Park S-Y, Weiner JJ, Fujii H, Chinnusamy V (2009) A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 462(7273):602–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264(5164):1452–1455

    Article  CAS  PubMed  Google Scholar 

  • Miyazono K-I, Miyakawa T, Sawano Y, Kubota K, Kang H-J, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y (2009) Structural basis of abscisic acid signalling. Nature 462(7273):609–614

    Article  CAS  PubMed  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, Van Der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107(1):177–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y-F, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biol 4(10):e327

    Article  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326(5958):1373–1379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136(1):136–148

    Article  CAS  PubMed  Google Scholar 

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, T-F Chow (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pei Z-M, Kuchitsu K (2005) Early ABA signaling events in guard cells. J Plant Growth Regul 24(4):296–307

    Article  CAS  Google Scholar 

  • Peumans WJ, Van Damme E (1995a) Lectins as plant defense proteins. Plant Physiol 109(2):347–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peumans WJ, Van Damme EJ (1995b) The role of lectins in plant defence. Histochem J 27(4):253–271

    Article  CAS  PubMed  Google Scholar 

  • Price J, Li T-C, Kang SG, Na JK, Jang J-C (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132(3):1424–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15(7):395–401

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Shekhawat N, Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Org 106(2):179–190

    Google Scholar 

  • Saavedra X, Modrego A, Rodríguez D, González-García MP, Sanz L, Nicolás G, Lorenzo O (2010) The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol 152(1):133–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park S-Y, Jamin M, Cutler SR, Rodriguez PL, Márquez JA (2009a) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462(7273):665–668

    Article  CAS  PubMed  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Márquez JA, Cutler SR, Rodriguez PL (2009b) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60(4):575–588

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Yan L, Liu Z-Q, Cao Z, Mei C, Xin Q, Wu F-Q, Wang X-F, Du S-Y, Jiang T (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22(6):1909–1935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Y-Y, Wang X-F, Wu F-Q, Du S-Y, Cao Z, Shang Y, Wang X-L, Peng C-C, Yu X-C, Zhu S-Y (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443(7113):823–826

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H (2010) ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis. Plant Cell 22:811–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2(6):503–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18(12):3415–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun X, Ji W, Ding X, Bai X, Cai H, Yang S, Qian X, Sun M, Zhu Y (2013) GsVAMP72, a novel Glycine soja R-SNARE protein, is involved in regulating plant salt tolerance and ABA sensitivity. Plant Cell Tiss Org 113:199–215

    Google Scholar 

  • Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70(4):599–613

    Article  CAS  PubMed  Google Scholar 

  • Van Damme EJ, Barre A, Rougé P, Peumans WJ (2004) Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9(10):484–489

    Article  PubMed  Google Scholar 

  • Van Hove J, Fouquaert E, Smith DF, Proost P, Van Damme EJ (2011) Lectin activity of the nucleocytoplasmic EUL protein from Arabidopsis thaliana. Biochem Biophys Res Commun 414(1):101–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJ (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72(13):1538–1550

    Article  CAS  PubMed  Google Scholar 

  • Wang X-Q, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292(5524):2070–2072

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, Sarles J (1978) Quantification of growth drought tolerance and avoidance of blue grama seedlings. Agron J 70:231–237

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101(3):1119–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16(12):1230–1236

    Article  CAS  PubMed  Google Scholar 

  • Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (31171586 to Y.Y.; 31271758 to J-M.W.), National 973 Project (2013CB733903 to Y.Y.) and National Transgene Project (2013ZX08009-003 to J-M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Wang, X., Yuan, D. et al. Over-expression of ArathEULS3 confers ABA sensitivity and drought tolerance in Arabidopsis . Plant Cell Tiss Organ Cult 117, 431–442 (2014). https://doi.org/10.1007/s11240-014-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0453-0

Keywords

Navigation