Skip to main content

Advertisement

Log in

Early ABA Signaling Events in Guard Cells

  • Thematic Article
  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The plant hormone abscisic acid (ABA) regulates a wide variety of plant physiological and developmental processes, particularly responses to environmental stress, such as drought. In response to water deficiency, plants redistribute foliar ABA and/or upregulate ABA synthesis in roots, leading to roughly a 30-fold increase in ABA concentration in the apoplast of stomatal guard cells. The elevated ABA triggers a chain of events in guard cells, causing stomatal closure and thus preventing water loss. Although the molecular nature of ABA receptor(s) remains unknown, considerable progress in the identification and characterization of its downstream signaling elements has been made by using combined physiological, biochemical, biophysical, molecular, and genetic approaches. The measurable events associated with ABA-induced stomatal closure in guard cells include, sequentially, the production of reactive oxygen species (ROS), increases in cytosolic free Ca2+ levels ([Ca2+]i), activation of anion channels, membrane potential depolarization, cytosolic alkalinization, inhibition of K+ influx channels, and promotion of K+ efflux channels. This review provides an overview of the cellular and molecular mechanisms underlying these ABA-evoked signaling events, with particular emphasis on how ABA triggers an “electronic circuitry” involving these ionic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Allan AC, Fricker MD, Ward JL, Beale MH, Trewavas AJ. 1994. 2 Transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, others. 2001. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, others. 2000. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI. 1999a. Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid–induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785–1798

    Article  CAS  Google Scholar 

  • Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, others. 1999b. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–747

    Article  CAS  Google Scholar 

  • Anderson BE, Ward JM, Schroeder JI. 1994. Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiol 104:1177–1183

    PubMed  CAS  Google Scholar 

  • Assmann SM. 1993. Signal transduction in guard cell. Annu Rev Cell Biol 9:345–375

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM. 2002. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14:S355–S373

    PubMed  CAS  Google Scholar 

  • Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse JM, others. 2000. Anion channels in higher plants: functional characterization, molecular structure and physiological role. BBA-Biomembranes 1465:199–218

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD. 2000. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR. 2000. Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR, Armstrong F. 1993. K+ channels of stomatal guard cells: abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191:330–341

    Article  CAS  Google Scholar 

  • Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, others. 2003. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651–654

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Guo FQ. 2005. New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P. 1996. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    PubMed  CAS  Google Scholar 

  • De Silva DLR, Cox RC, Hetherington AM, Mansfield TA. 1985. Synergism between calcium ions and abscisic acid in preventing stomatal opening. New Phytol 101:555–563

    Google Scholar 

  • Fan LM, Zhao ZX, Assmann SM. 2004. Guard cells: a dynamic signaling model. Current Opin Plant Biol 7:537–546

    Article  CAS  Google Scholar 

  • Fitzsimons PJ, Weyers JDB. 1987. Responses of Commelina communis L. guard cell protoplasts to abscisic acid. J Exp Bot 38:992–1001

    CAS  Google Scholar 

  • Furuichi T, Cunningham KW, Muto S. 2001. A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 42:900–905

    PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, others. 2003. Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    Article  PubMed  CAS  Google Scholar 

  • Ghelis T, Dellis O, Jeannette E, Bardat F, Miginiac E, others. 2000. Abscisic acid plasmalemma perception triggers a calcium influx essential for RAB18 gene expression in Arabidopsis thaliana suspension cells. FEBS Lett 483:67–70

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Fricker MD, Read ND, Trewavas AJ. 1991. Role of calcium in signal transduction of Commelina guard cells. Plant Cell 3:333–344

    Article  PubMed  CAS  Google Scholar 

  • Goh CH, Kinoshita T, Oku T, Shimazaki KI. 1996. Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplasts. Plant Physiol 111:433–440

    PubMed  CAS  Google Scholar 

  • Grabov A, Leung J, Giraudat J, Blatt MR. 1997. Alteration of anion channel kinetics in wild-type and abi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid. Plant J 12:203–213

    Article  PubMed  CAS  Google Scholar 

  • Grefen C, Harter K. 2004 Plant two-component systems: principles, functions, complexity and cross talk. Planta 219:733–742

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Young J, Crawford NM. 2003. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 15:107–117

    CAS  Google Scholar 

  • Guo F-Q, Okamoto M, Crawford NM. 2003. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  CAS  Google Scholar 

  • Hamilton DWA, Hills A, Köhler B, Blatt MR. 2000. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    Article  PubMed  CAS  Google Scholar 

  • Han S, Tang R, Anderson LK, Woerner TE, Pei Z-M. 2003. A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196–200

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Breton G, Harmon A. 2004. Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    Article  PubMed  CAS  Google Scholar 

  • He Y, Tang R-H, Hao Y, Stevens RD, Cook CW, others. 2004. Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Busch H, Raschke K. 1990. Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9:3889–3892

    PubMed  CAS  Google Scholar 

  • Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Jon JH, Kwak JM, Nam HG. 1997. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113:1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Hornberg C, Weiler EW. 1984. High affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310:321–324

    CAS  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI. 2001. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Murata Y, Young JJ, Kwak JM, Mackesy DZ, others. 2002. Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1. Plant Physiol 130:1276–1287

    Article  PubMed  CAS  Google Scholar 

  • Irving HR, Gehring CA, Parish RW. 1992. Changes in cytosolic pH and calcium of guard-cells precede stomatal movements. Proc Natl Acad Sci USA 89:1790–1794

    PubMed  CAS  Google Scholar 

  • Ishibashi K, Suzuki M, Imai M. 2000. Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem Biophys Res Commun 270:370–376

    Article  PubMed  CAS  Google Scholar 

  • Ivashikina N, Hedrich R. 2005. K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. Plant J 41:606–614

    Article  PubMed  CAS  Google Scholar 

  • Jeannette E, Rona JP, Bardat F, Cornel D, Sotta B, others. 1999. Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant J 18:13–22

    Article  PubMed  CAS  Google Scholar 

  • Kadota Y, Furuichi T, Ogasawara Y, Goh T, Higashi K, others. 2004. Identification of putative voltage-dependent Ca2+-permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 cells. Biochem Biophys Res Commun 317:823–830

    Article  PubMed  CAS  Google Scholar 

  • Karita E., Yamakawa H., Mitsuhara I., Kuchitsu K., Ohashi Y. 2004 Three types of tobacco calmodulins characteristically activate plant NAD kinase at different Ca2+ concentration and pHs. Plant Cell Physiol 45:1371–1379

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Cano-Delgado AC, Seto H, Hiranuma S, Fujioka S, others. 2005. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Nishimura M, Shimazaki KI. 1995. Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell 7:1333–1342

    Article  PubMed  CAS  Google Scholar 

  • Kitahata K, Nakano T, Kuchitsu K, Yoshida S, Asami T. 2005. Biotin-labeled abscisic acid as a probe for investigating abscisic acid binding sites on plasma membranes of barley aleurone protoplasts. Bioorg Med Chem 13:3351–3358

    PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ. 1991. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Kruse T, Tallman G, Zeiger E. 1989. Isolation of guard cell protoplasts from mechanically prepared epidermis of Vicia faba leaves. Plant Physiol 90:1382–1386

    Article  PubMed  CAS  Google Scholar 

  • Kuchitsu K, Ward JM, Allen GJ, Schelle I, Schroeder JI. 2002. Loading acetoxymethyl ester fluorescent dyes into the cytoplasm of Arabidopsis and Commelina guard cells. New Phytol 153:527–533

    Article  CAS  Google Scholar 

  • Kurkdjian A, Guern J. 1989. Intracellular pH: measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40:271–303

    Article  CAS  Google Scholar 

  • Kurusu T, Sakurai Y, Miyao A, Hirochika H, Kuchitsu K. 2004. Identification of a putative voltage-gated Ca2+-permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol 45:693–702

    Article  PubMed  CAS  Google Scholar 

  • Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K. 2005. Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798–809

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, others. 2002. Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14:2849–2861

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, others. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. 2003. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Bouvierdurand M, Morris PC, Guerrier D, Chefdor F, others. 1994. Arabidopsis ABA response gene abi1 features of a calcium modulated protein phosphatase. Science 264:1448–1452

    PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J. 1998. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  PubMed  CAS  Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MRG, Hedrich R. 2005. Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci USA 102:4203–4208

    PubMed  CAS  Google Scholar 

  • Li JX, Wang XQ, Watson MB, Assmann SM. 2000. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    PubMed  CAS  Google Scholar 

  • Li J, Chory J. 1999. Brassinosteroid actions in plants. J Exp Bot 50:275–282.

    Article  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. 2002. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    PubMed  CAS  Google Scholar 

  • MacRobbie E. 1992. Calcium and ABA-induced stomatal closure. Philos Trans R Soc Lond Ser B 338:5–18

    CAS  Google Scholar 

  • MacRobbie EAC. 1981. Effects of ABA in isolated guard-cells of Commelina communis L. J Exp Bot 32:563–572

    CAS  Google Scholar 

  • MacRobbie EAC. 1998. Signal transduction and ion channels in guard cells. Phil Trans R Soc Lond Ser B 353:1475–1488

    CAS  Google Scholar 

  • Mata CG, Lamattina L. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Ogawa M, Morita A, Sakagami Y. 2002. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472

    Article  PubMed  CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM. 1990. Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343:186–188

    CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM. 1991. Partial inhibition of ABA-induced stomatal closure by calcium-channel blockers. Proc R Soc Lond Ser B Biol 243:195–201

    CAS  Google Scholar 

  • McAinsh MR, Hetherington AM. 1998. Encoding specificity in Ca2+ signalling systems. Trend Plant Sci 3:32–36

    Google Scholar 

  • Meyer K, Leube MP, Grill E. 1994. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455

    PubMed  CAS  Google Scholar 

  • Miedema H, de Boer AH, Pantoja O. 2003. The gating kinetics of the slow vacuolar channel. A novel mechanism for SV channel functioning? J Membr Biol 194:11–20

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY. 1999. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140

    PubMed  CAS  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, others. 2004. Lipid rafts in higher plant cells—purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  PubMed  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. 2002 Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT. 2002. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, others. 2005. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119

    Article  PubMed  CAS  Google Scholar 

  • Outlaw WH. 2003. Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci 22:503–529

    Google Scholar 

  • Pandey GK, Cheong YH, Kim KN, Grant JJ, Li LG, others. 2004. The calcium sensor calcineurin B-Like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    PubMed  CAS  Google Scholar 

  • Pandey S, Assmann SM. 2004. The Arabidopsis putative G protein–coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    PubMed  CAS  Google Scholar 

  • Pei Z-M, Baizabal-Aguirre VM, Allen GJ, Schroeder JI. 1998. A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells. Proc Natl Acad Sci USA 95:6548–6553

    Article  PubMed  CAS  Google Scholar 

  • Pei Z-M, Ghassemian M, Kwak CM, McCourt P, Schroeder JI. 1998. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282:287–290

    Article  PubMed  CAS  Google Scholar 

  • Pei Z-M, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI. 1997. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423

    Article  PubMed  CAS  Google Scholar 

  • Pei Z-M, Murata Y, Benning G, Thomine S, Klusener B, others. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Pei Z-M, Ward JM, Schroeder JI. 1999. Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles. Plant Physiol 121:977–986

    Article  PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, others. 2005. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  PubMed  CAS  Google Scholar 

  • Perfus-Barbeoch L, Jones AM, Assmann SM. 2004. Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Current Opin Plant Biol 7:719–731

    Article  CAS  Google Scholar 

  • Pottosin II, Tikhonova LI, Hedrich R, Schonknecht G. 1997. Slowly activating vacuolar channels can not mediate Ca2+-induced Ca2+ release. Plant J 12:1387–1398

    Article  CAS  Google Scholar 

  • Razem FA, Luo M, Liu JH, Abrams SR, Hill RD. 2004. Purification and characterization of a barley aleurone abscisic acid-binding protein. J Biol Chem 279:9922–9929

    PubMed  CAS  Google Scholar 

  • Reddy VS, Reddy ASN. 2004. Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745–1776

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema MRG, Hedrich R. 2002. Studying guard cells in the intact plant: modulation of stomatal movement by apoplastic factors. New Phytol 153:425–431

    CAS  Google Scholar 

  • Roelfsema MRG, Levchenko V, Hedrich R. 2004. ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37:578–588

    Article  PubMed  CAS  Google Scholar 

  • Rudd JJ, Franklin-Tong VE. 2001. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151:7–33

    Article  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF. 2002. Calcium at the crossroads of signaling. Plant Cell 14:S401–417

    PubMed  CAS  Google Scholar 

  • Scholz-Starke J, De Angeli A, Ferraretto C, Paluzzi S, Gambale F, others. 2004. Redox-dependent modulation of the carrot SV channel by cytosolic pH. FEBS Lett 576:449–454

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. 2001a. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  CAS  Google Scholar 

  • Schroeder JI, Hagrwara S. 1989. Cytosolic cacium regulates ion channels in the plasma-membrane of Vicia faba guards cells. Nature 338:427–430

    Article  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ. 2001b. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330

    Article  CAS  Google Scholar 

  • Schultz TF, Quatrano RS. 1997. Evidence for surface perception of abscisic acid by rice suspension cells as assayed by Em gene expression. Plant Sci 130:63–71

    Article  CAS  Google Scholar 

  • Schwartz A, Wu WH, Tucker EB, Assmann SM. 1994. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc Natl Acad Sci USA 91:4019–4023

    PubMed  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, others. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Staxen I, Pical C, Montgomery LT, Gray JE, Hetherington AM, others. 1999. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96:1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Talbott LD, Zeiger E. 1998. The role of sucrose in guard cell osmoregulation. J Exp Bot 49:329–337

    Article  Google Scholar 

  • Tallman G. 2004. Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J Exp Bot 55:1963–1976

    Article  PubMed  CAS  Google Scholar 

  • Torii KU. 2004. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234:1–46

    PubMed  CAS  Google Scholar 

  • Tsien RY. 1980. New calcium indicators and buffers with high selectivity against magnesium and protons—design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ. 1982. Calcium homeostasis in intact lymphocytes—cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Article  PubMed  CAS  Google Scholar 

  • Very AA, Sentenac H. 2002. Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    PubMed  CAS  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM. 2001. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    PubMed  CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J. 2001. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  PubMed  CAS  Google Scholar 

  • Wille AC, Lucas WJ. 1984. Ultrastructural and histochemical studies on guard cells. Planta 160:129–142

    Article  Google Scholar 

  • Wood NT, Allan AC, Haley A, Viry-Moussaid M, Trewavas AJ. 2000. The characterization of differential calcium signalling in tobacco guard cells. Plant J 24:335–344

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–183

    PubMed  CAS  Google Scholar 

  • Yamazaki D, Yoshida S, Asami T, Kuchitsu K. 2003. Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. Plant J 35:129–139

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, others. 2002. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    Article  PubMed  CAS  Google Scholar 

  • Zaharia LI, Walker-Simmon MK, Rodríguez CN, Abram SR. 2005. Chemistry of abscisic acid and abscisic acid catabolites and analogs. J Plant Growth Regul 24 (DOI: 10.1007/s00344-005-0066-2

  • Zeevaart JAD, Creelman RA. 1988. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zeiger E. 1983. The biology of stomatal guard cells. Annu Rev Plant Physiol 34:441–474

    Article  CAS  Google Scholar 

  • Zhang DP, Wu ZY, Li XY, Zhao ZX. 2002. Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 128:714–725

    PubMed  CAS  Google Scholar 

  • Zhang SQ, Outlaw WH. 2001. Gradual long-term water stress results in abscisic acid accumulation in the guard-cell symplast and guard-cell apoplast of intact Vicia faba L. plants. J Plant Growth Regul 20:300–307

    Article  CAS  Google Scholar 

  • Zhang X, Wang HB, Takemiya A, Song CP, Kinoshita T, others. 2004. Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts. Plant Physiol 136:4150–4158

    PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong FC, Gao JF, Galbraith DW, Song CP. 2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. James Siedow for reading the manuscript. The research in the authors’ laboratories was supported by Duke University Startup Funds, NSF (MCB- 0451072), USDA (2005-02413) to Z-MP, and by CREST, JST and the Rice Genome Project (MP2134) to KK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Ming Pei or Kazuyuki Kuchitsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, ZM., Kuchitsu, K. Early ABA Signaling Events in Guard Cells. J Plant Growth Regul 24, 296–307 (2005). https://doi.org/10.1007/s00344-005-0095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-005-0095-x

Keywords

Navigation