Skip to main content
Log in

Agrobacterium tumefaciens-mediated transformation of bush monkey-flower (Mimulus aurantiacus Curtis) with a new reporter gene ZsGreen

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A successful in vitro Agrobacterium-mediated transformation protocol was developed for Mimulus aurantiacus, a model species for ecological and evolutionary genetics and a promising ornamental plant. Three binary vectors were tested, each containing the hptII selectable marker gene and one of the reporter genes: gusA, EGFP or ZsGreen, all of them under CaMV 35S promoter. Genetic transformation was achieved through 4 days of co-cultivation of leaf, petiole and hypocotyl explants with Agrobacterium tumefaciens strain LBA 4404. Explants produced transformed callus tissue on solid modified Murashige and Skoog medium supplemented with 1 mg L−1 6-benzylaminopurine, 0.5 mg L−1 1-naphthaleneacetic acid, 30 g L−1 sucrose and 20 or 50 mg L−1 hygromycin B. All three reporter genes were expressed in callus tissue but the intensity of expression gradually decreased during further plant development. The new reporter gene ZsGreen proved suitable for plant transformation experiments since very intense and bright fluorescence was detected. Out of 1,760 co-cultured explants, 110 plants were regenerated and all of them were found to be PCR positive for the selection and/or reporter genes. Chemiluminescent Southern blot analysis revealed that 91 % of the regenerated plants (100 T0 plants) contained T-DNA integrated in their genome. Transformation efficiency varied from 1.4 to 23.3 % for hypocotyl and petiole explants, respectively. Integration of some backbone sequences in plant genomes was confirmed in 75.3 % of T0 plants. Using this protocol, stable transformants expressing selectable marker gene hptII and one of the reporter genes (gusA, ZsGreen or EGFP) were obtained in 4–5 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

BAP:

6-Benzylaminopurine

CaMV 35S:

Cauliflower mosaic virus 35S promoter

CTAB:

Cetyl trimethylammonium bromide

EGFP:

Enhanced green fluorescent protein

EM:

Shoot elongation medium

GUS:

b-Glucuronidase

hptII:

Hygromycin phosphotransferase gene

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog medium (Murashige and Skoog 1962)

NAA:

1-Naphthaleneacetic acid

RM:

Regeneration medium

TDZ:

Thidiazuron

X-Gluc:

5-Bromo-4-chloro-3-indolyl-β-glucuronic acid

ZsGreen:

Green fluorescent protein derived from Zoanthus sp

References

  • Afolabi AS, Worland B, Snape JW, Vain P (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet 109:815–826. doi:10.1007/s00122-004-1692-y

    Article  CAS  PubMed  Google Scholar 

  • De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breed 6:459–468. doi:10.1023/A:1026575524345

    Article  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197–206. doi:10.1007/s11240-007-9324-2

    Article  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘‘Gene-Jockeying’’ tool. Microbiol Mol Biol Rev 67:16–37. doi:10.1128/MMBR.67.1.16-37.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halfhill MD, Richards HA, Mabon SA, Stewart CN Jr (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet 103:659–667. doi:10.1007/s001220100613

    Article  CAS  Google Scholar 

  • Halfhill MD, Millwood RJ, Rufty TW, Weissinger AK, Stewart CN Jr (2003) Spatial and temporal patterns of green fluorescent protein (GFP) fluorescence during leaf canopy development in transgenic oilseed rape, Brassica napus l.. Plant Cell Rep 22:338–343. doi:10.1007/s00299-003-0696-4

    Article  CAS  PubMed  Google Scholar 

  • Han KP, Lincoln DE (1997) The impact of plasticity and maternal effect on the evolution of leaf resin production in Diplacus aurantiacus. Evol Ecol 11:471–484. doi:10.1023/A:1018489024911

    Article  Google Scholar 

  • Hare JD (2002a) Geographic and genetic variation in the leaf surface resin components of Mimulus aurantiacus from southern California. Biochem Syst Ecol 30:281–296. doi:10.1016/S0305-1978(01)00076-X

    Article  CAS  Google Scholar 

  • Hare JD (2002b) Seasonal variation in the leaf resin components of Mimulus aurantiacus. Biochem Syst Ecol 30:709–720. doi:10.1016/S0305-1978(01)00144-2

    Article  CAS  Google Scholar 

  • Hare JD (2008) Inheritance of leaf geranylflavanone production and seed production within and among chemically distinct populations of Mimulus aurantiacus. Biochem Syst Ecol 36:84–91. doi:10.1016/j.bse.2007.08.012

    Article  CAS  Google Scholar 

  • Hare JD, Borchardt DB (2002) Structure of a geranyl-alpha-pyrone from Mimulus aurantiacus leaf resin. Phytochemistry 59:375–378. doi:10.1016/S0031-9422(01)00434-4

    Article  PubMed  Google Scholar 

  • Hogan S (2003) Flora: a gardener’s encyclopedia. Timber Press, Portland

    Google Scholar 

  • Hraška M, Rakouský S, Čurn V (2006) Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell Tiss Organ Cult 86:303–318. doi:10.1007/s11240-006-9131-1

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773. doi:10.1023/A:1025093101021

    Article  CAS  PubMed  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957. doi:10.1046/j.1365-313X.1997.11050945.x

    Article  CAS  PubMed  Google Scholar 

  • Kump B, Javornik B (1996) Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Sci 114:149–158. doi:10.1016/0168-9452(95)04321-7

    Article  CAS  Google Scholar 

  • Liu H, Guo X, Naeem MS, Liu D, Xu L, Zhang W, Tang G, Zhou W (2011) Transgenic Brassica napus l. lines carrying a two gene construct demonstrate enhanced resistance against Plutella xylostella and Sclerotinia sclerotiorum. Plant Cell Tissue Organ Cult 106:143–151. doi:10.1007/s11240-010-9902-6

    Article  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973. doi:10.1038/13657

    Article  CAS  PubMed  Google Scholar 

  • Milojević J, Tubić L, Nolić V, Mitić N, Ćalić-Dragosavac D, Vinterhalter B, Zdravković-Korać S (2012) Hygromycin promotes somatic embryogenesis in spinach. Plan Cell Tissue Organ Cult 109:573–579. doi:10.1007/s11240-012-0117-x

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Murovec J, Bohanec B (2013) Haploid induction in Mimulus aurantiacus Curtis obtained by pollination with gamma irradiated pollen. Sci Hortic 162:218–225. doi:10.1016/j.scienta.2013.08.012

    Article  CAS  Google Scholar 

  • Murovec J, Štajner N, Jakše J, Javornik B (2007) Microsatellite marker for homozygosity testing of putative doubled haploids and characterization of Mimulus species derived by a cross-genera approach. J Am Soc Hort Sci 132:659–663

    CAS  Google Scholar 

  • Murovec J, Eler K, Bohanec B (2010) Adventitious shoot regeneration from leaf and internodal explants of Mimulus aurantiacus Curtis. Propag Ornam Plant 10:18–23

    Google Scholar 

  • Nikolić R, Mitić N, Ninković S, Nešković M (2007) Efficient genetic transformation of Lotus corniculatus l. using a direct shoot regeneration protocol, stepwise hygromycin B selection, and a super-binary Agrobacterium tumefaciens vector. Arch Biol Sci 59:311–317. doi:10.2298/ABS0704311N

    Article  Google Scholar 

  • Sha Y, Li S, Pei Z, Luo L, Tian Y, He C (2004) Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet 108:306–314. doi:10.1007/s00122-003-1423-9

    Article  CAS  PubMed  Google Scholar 

  • Shou HX, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium mediated transformation. Mol Breed 13:201–208. doi:10.1023/B:MOLB.0000018767.64586.53

    Article  CAS  Google Scholar 

  • Streisfeld MA, Kohn JR (2005) Contrasting patterns of floral and molecular variation across a cline in Mimulus aurantiacus. Evolution 59:2548–2559. doi:10.1554/05-514.1

    CAS  PubMed  Google Scholar 

  • Streisfeld MA, Kohn JR (2007) Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. J Evol Biol 20:122–132. doi:10.1111/j.1420-9101.2006.01216.x

    Article  CAS  PubMed  Google Scholar 

  • Streisfeld MA, Rausher MD (2009) Altered trans-regulatory control of gene expression in multiple anthocyanin genes contributes to adaptive flower color evolution in Mimulus aurantiacus. Mol Biol Evol 26:433–444. doi:10.1093/molbev/msn268

    Article  CAS  PubMed  Google Scholar 

  • Streisfeld MA, Young WN, Sobel JM (2013) Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in Mimulus aurantiacus. PLoS Genet 9(3):e1003385. doi:10.1371/journal.pgen.1003385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis l.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23:803–810. doi:10.1007/s00299-004-0898-4

    Article  CAS  PubMed  Google Scholar 

  • Suwanaketchanatit C, Piluek J, Peyachoknagul S, Huehne PS (2007) High efficiency of stable genetic transformation in Dendrobium via microprojectile bombardment. Biol Plant 51:720–727. doi:10.1007/s10535-007-0148-z

    Article  CAS  Google Scholar 

  • Thompson DM (1993) Mimulus. In: Hickman JC (ed) The jepson manual: higher plants of California. University of California Press, Los Angeles, pp 1037–1046

    Google Scholar 

  • Wenck A, Pugieux C, Turner M, Dunn M, Stacy C, Tiozzo A, Dunder E, van Grinsven E, Khan R, Sigareva M, Wang WC, Reed J, Drayton P, Oliver D, Trafford H, Legris G, Rushton H, Tayab S, Launis K, Chang YF, Chen DF, Melchers L (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251. doi:10.1007/s00299-003-0690-x

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Sparks CA, Jones HD (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breed 18:195–208. doi:10.1007/s11032-006-9027-0

    Article  Google Scholar 

  • Wu CA, Lowry DB, Cooley AM, Wright KM, Lee YW, Willis JH (2008) Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity 100:220–230. doi:10.1038/sj.hdy.6801018

    Article  CAS  PubMed  Google Scholar 

  • Yuan YW, Sagawa JM, Young RC, Christensen BJ, Bradshaw HD Jr (2013) Genetic dissection of a major anthocyanin QTL contributing to pollinator-mediated reproductive isolation between sister species of Mimulus. Genetics 194:255–263. doi:10.1534/genetics.112.146852

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041–1048. doi:10.1007/s002990000245

    Article  CAS  Google Scholar 

  • Zhou X, Carranco R, Vitha S, Hall TC (2005) The dark side of green fluorescent protein. New Phytol 168:313–322. doi:10.1111/j.1469-8137.2005.01489.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grant P4-0077 from the Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Murovec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Susič, N., Bohanec, B. & Murovec, J. Agrobacterium tumefaciens-mediated transformation of bush monkey-flower (Mimulus aurantiacus Curtis) with a new reporter gene ZsGreen . Plant Cell Tiss Organ Cult 116, 243–251 (2014). https://doi.org/10.1007/s11240-013-0402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0402-3

Keywords

Navigation