Skip to main content

Advertisement

Log in

Cloning and characterization of a differentially expressed cDNA encoding myo-inositol-1-phosphate synthase involved in response to abiotic stress in Jatropha curcas

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

D-myo-inositol-3-phosphate synthase (MIPS) catalyzes the reaction from d-glucose 6-phosphate to D-myo-inositol 3-phosphate (MIP), which is the first and rate-limiting step in myo-inositol biosynthesis. In this study, Jatropha curcas MIPS cDNA (JcMIPS) (GenBank accession no. EF 185781) has been isolated using mRNA differential display technology (DDRT) and the rapid amplification of cDNA ends (RACE). The cDNA clone of JcMIPS is comprised of 1,957 bp, encoding 509 amino acids, with a predicted molecular weight of 56.4 kDa. The JcMIPS protein is highly homologous to those from other plant species, ranging from 88.4 to 91.18% homology at the amino acid levels. Real-time quantification polymerase chain reaction (PCR) analysis has revealed that JcMIPS transcripts are highly present in seed and leaf tissues, but are at low levels in stem and flower tissues. Furthermore, the transcription of JcMIPS in leaves is up-regulated by abscisic acid (ABA) (100 μM), drought (30% PEG-6000), NaCl (200 mM), and low-temperature (4°C) treatments. The observed increase of JcMIPS enzyme activity is also detected following treatments with ABA, drought, and NaCl. Interestingly, JcMIPS enzyme activity is only slightly changed following low-temperature treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5a, b
Fig. 6

Similar content being viewed by others

References

  • Abreu EFM, Aragão FJ (2007) Isolation and characterization of a myo-inositol-1-phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress. Ann Bot 99:285–292

    Article  PubMed  CAS  Google Scholar 

  • Barnett JEG, Brice RE, Corina DL (1970) A colorimetric determination of inositol monophosphates as an assay for d-glucose 6-phosphate–1L-myoInositol 1-phosphate cyclase. Biochem J 119:183–186

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Chappell AS, Scaboo AM, Wu X, Nguyen H, Pantalone VR, Bilyeu KD (2006) Characterization of the MIPS gene family in Glycine max. Plant Breed 125:493–500

    Article  CAS  Google Scholar 

  • Chun JA, Jin UH, Lee JW, Yi YB, Hyung NI, Kang MH et al (2003) Isolation and characterization of a myo-inositol 1-phosphate synthase cDNA from developing sesame (Sesamum indicum L.) seeds: functional and differential expression, and salt-induced transcription during germination. Planta 216:874–880

    PubMed  CAS  Google Scholar 

  • Eswaran N, Parameswaran S, Sathram B, Anantharaman B, Kumar GRK, Tangirala SJ (2010) Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnol 10:23

    Article  PubMed  Google Scholar 

  • He Y, Guo XL, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F (2009) Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tiss Organ Cult 98:11–17

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    Article  PubMed  CAS  Google Scholar 

  • Jin TC, Chang Q, Li WF, Yin DX, Li ZJ, Wang DL, Liu B, Liu LX (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Ju S, Shaltiel G, Shamir A, Agam G, Greenberg ML (2004) Human 1-D-myo-inositol-3-phosphate synthase is functional in yeast. J Biol Chem 279:21759–21765

    Article  PubMed  CAS  Google Scholar 

  • Juwarkar AA, Yadav SK, Kumar P, Singh SK (2008) Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils. Environ Monit Assess 145:7–15

    Article  PubMed  CAS  Google Scholar 

  • Kiselev KV, Turlenko AV, Zhuravlev YN (2010) Structure and expression profiling of a novel calcium-dependent protein kinase gene PgCDPK1a in roots, leaves, and cell cultures of Panax ginseng. Plant Cell Tiss Organ Cult 103:197–204

    Article  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Ann Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Penna S (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult 102:17–25

    Article  Google Scholar 

  • Luo T, Ma DW, Deng WY, Chen F (2005) Effect of low temperature on physiological indexes of Jatropha curcas. Chin J Oil Crop Sci 27(4):50–54

    Google Scholar 

  • Ma QQ, Wang W, Li YH, Li DQ, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol 163:165–175

    Article  PubMed  CAS  Google Scholar 

  • Majumder AL, Johnson MD, Henry SA (1997) 1L-myo-inositol-1-phosphate synthase. Biochim Biophys Acta 1348:245–256

    PubMed  CAS  Google Scholar 

  • Majumder AL, Chatterjee A, Ghosh Dastidar K, Majee M (2003) Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett 553:3–10

    Article  PubMed  CAS  Google Scholar 

  • Misra P, Gupta N, Toppo DD, Pandey V, Mishra MK, Tuli R (2010) Establishment of long-term proliferating shoot cultures of elite Jatropha curcas L. by controlling endophytic bacterial contamination. Plant Cell Tiss Organ Cult 100:189–197

    Article  Google Scholar 

  • Muanza DN, Euler KL, Williams L, Newman DJ (1995) Screening for antitumor and anti-HIV activities of nine medicinal plants from Zaire. Int J Pharmacogn 33:98–106

    Article  CAS  Google Scholar 

  • Park SH, Kim JI (2004) Characterization of recombinant Drosophila melanogaster myo-inositol-1-phosphate synthase expressed in Escherichia coli. J Microbiol 42:20–24

    PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  • Raychaudhuri A, Majumder AL (1996) Salinity-induced enhancement of L-myo-inositol 1-phosphate synthase in rice (Oryza sativa L). Plant Cell Environ 19:1437–1442

    Article  CAS  Google Scholar 

  • Saneoka H, Ishiguro S, Moghaieb REA (2001) Effect of salinity and abscisic acid on accumulation of glycinebetaine and betaine aldehyde dehydrogenase mRNA in Sorghum leaves (Sorghum bicolor). J Plant Physiol 158:853–859

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Singh YN, Ikahihifo T, Panuve M, Slatter C (1984) Folk medicine in Tonga. A study of the use of herbal medicines for obstetric and gynaecological conditions and disorders. J Ethnopharmacol 12:305–329

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang YX, Jiang LD, Xu Y, Wang YC, Lu DH, Chen F (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin 39(10):787–794

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Science & Technology Pillar Program (no. 2006BAD07A04), the National Natural Science Foundation of China (no. 31071448), and the International Cooperation Program (no. 2006 DFB63400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Huang, J., Gou, C.B. et al. Cloning and characterization of a differentially expressed cDNA encoding myo-inositol-1-phosphate synthase involved in response to abiotic stress in Jatropha curcas . Plant Cell Tiss Organ Cult 106, 269–277 (2011). https://doi.org/10.1007/s11240-011-9917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9917-7

Keywords

Navigation