Skip to main content
Log in

Desiccation and cryopreservation of actively-growing cultured plant cells and protoplasts

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Actively-growing cultured cells of Pogonatum and Polytrichum were desiccated and cryopreserved. Although Pogonatum was slightly more tolerant to desiccation, both species were cryopreserved with >90% survival rate. An examination of isolated protoplasts revealed that differences in desiccation tolerance were likely dependent on levels of injury of plasma membranes. Trehalose and sucrose provided some protective effects during protoplast desiccation, but mannitol and glucose were less effective when Pogonatum protoplasts were directly desiccated and preserved at various temperatures. The effectiveness of glucose was enhanced when combined with culture medium components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

BA:

6-Benzyl aminopurine

MS:

Murashige and Skoog (1962) medium

CI:

Callus induction medium (Takio et al. 1986)

References

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584. doi:10.1242/jeb.02179

    Article  PubMed  Google Scholar 

  • Baynes JW, Watkins NG, Fisher CI, Hull CJ, Patrick JS, Ahmed MU, Dunn JA, Thorpe SR (1989) The Amadori product on protein: structure and reactions. In: Baynes JW, Monnier VM (eds) The Maillard reaction in aging, diabetes and nutrition. Liss AR, Inc., New York, pp 43–68

    Google Scholar 

  • Blakesley D, Almazrooei S, Bhatti MH, Henshaw GG (1996) Cryopreservation of non-encapsulated embryogenic tissue of sweet potato (Ipomoea batatas). Plant Cell Rep 15:873–876. doi:10.1007/BF00233160

    Article  CAS  Google Scholar 

  • Bryant G, Koster KL, Wolfe J (2001) Membrane behaviour in seeds and other systems at low water content: the various effects of solutes. Seed Sci Res 11:17–25

    CAS  Google Scholar 

  • Burke MJ (1986) The glassy state and survival of anhydrous biological systems. In: Leopold AC (ed) Membranes metabolism and dry organisms. Comstock Publishing Associates, Ithaca, New York, pp 358–363

    Google Scholar 

  • Caffrey M, Fonseca V, Leopold AC (1988) Lipid–sugar interactions: relevance to anhydrous biology. Plant Physiol 86:754–758. doi:10.1104/pp.86.3.754

    Article  PubMed  CAS  Google Scholar 

  • Cella R, Colombo R, Galli MG, Nielsen E, Rollo F, Sala F (1982) Freeze-preservation of rice cells: a physiological study of freeze-thawed cells. Physiol Plant 55:279–284. doi:10.1111/j.1399-3054.1982.tb00292.x

    Article  CAS  Google Scholar 

  • Chen Y, Wang JH (2003) Cryopreservation of carrot (Daucus carota L.) cell suspensions and protoplasts by vitrification. Cryo Letters 24:57–64

    PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984a) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703. doi:10.1126/science.223.4637.701

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Whittam MA, Chapman D, Crowe LM (1984b) Interactions of phospholipid monolayers with carbohydrates. Biochim Biophys Acta 769:151–159. doi:10.1016/0005-2736(84)90018-X

    Article  PubMed  CAS  Google Scholar 

  • Crowe LM, Womersley C, Crowe JH, Apple L, Rudolph A (1986) Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochim Biophys Acta 861:131–140

    CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Plant Physiol 54:579–599

    CAS  Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot-tips. Cryo Letters 11:413–426

    Google Scholar 

  • Fang JY, Wetten A, Hadley P (2004) Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos for long-term germplasm storage. Plant Sci 166:669–675. doi:10.1016/j.plantsci.2003.11.002

    Article  CAS  Google Scholar 

  • Gaff DF, Okang’o-Ogola O (1971) The use of non-permeating pigments for testing the survival of cells. J Exp Bot 22:756–758. doi:10.1093/jxb/22.3.756

    Article  Google Scholar 

  • Gonzales-Arnao MT, Juarez J, Ortega C, Navarro L, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of Citrus using the encapsulation-dehydration technique. Cryo Letters 24:85–94

    Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1984a) The behaviour of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury. Protoplasma 123:83–94. doi:10.1007/BF01283579

    Article  Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1984b) The influence of cold acclimation on the behavior of the plasma membrane following osmotic contraction of isolated protoplasts. Protoplasma 123:161–173. doi:10.1007/BF01281163

    Article  Google Scholar 

  • Grout BWW (1995) Genetic preservation of plant cells in vitro. Springer, New York

    Google Scholar 

  • Halperin SJ, Koster KL (2006) Sugar effects on membrane damage during desiccation of pea embryo protoplasts. J Exp Bot 57:2303–2311. doi:10.1093/jxb/erj208

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka R, Sugawara Y (2006) Involvement of protein synthesis during preculture in development of desiccation tolerance in suspension cultured cells of Marchantia polymorpha L. Cryobiol Cryotechnol 52:129–133

    Google Scholar 

  • Hatanaka R, Sugawara Y (2007) Glass formation and desiccation tolerance in cultured plant cells. Cryobiol Cryotech 53:155–160

    Google Scholar 

  • Hoekstra FA, Van Roekel T (1988) Desiccation tolerance of Papaver dubium L. pollen during its development in the anther: possible role of phospholipid composition and sucrose content. Plant Physiol 88:626–632. doi:10.1104/pp.88.3.626

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa T, Kubota H (1957) On the osmotic pressure and resistance to desiccation of epiphytic mosses from a beech forest, south-west Japan. J Ecol 45:579–591. doi:10.2307/2256937

    Article  Google Scholar 

  • Ishikawa M (1994) Recent progress in cryopreservation of plant genetic resources. In: JIRCAS international symposium Ser., vol 2, pp 155–167

  • Ishikawa M, Kitashima T, Hemachandra PV, Yamaguchi E, Toyomasu T (2005) Constant relative humidity chambers using phosphoric acid for controlled desiccation of small recalcitrant biological samples. Seed Sci Technol 33:741–752

    Google Scholar 

  • Kaanane A, Labuza TP (1989) The Maillard reaction in foods. In: Baynes JW, Monnier VM (eds) The Maillard reaction in aging, diabetes and nutrition. Liss AR, Inc., New York, pp 301–327

    Google Scholar 

  • Kartha KK (1985) Cryopreservation of plant cells and organs. CRC Press, FL

    Google Scholar 

  • Kim YH, Janick J (1989) ABA and polyox-encapsulation or high humidity increases survival of desiccated somatic embryos of celery. HortScience 24:674–676

    CAS  Google Scholar 

  • Koster KL, Leopold AC (1988) Sugars and desiccation tolerance in seeds. Plant Physiol 88:828–832. doi:10.1104/pp.88.3.829

    Article  Google Scholar 

  • Koster KL, Sommervold CL, Lei YP (1996) The effect of storage temperature on interactions between dehydrated sugars and phosphatidylcholine. J Therm Anal 47:1581–1596. doi:10.1007/BF01992847

    Article  CAS  Google Scholar 

  • Koster KL, Reisdorph N, Ramsay JL (2003) Changing desiccation tolerance of pea embryo protoplasts during germination. J Exp Bot 54:1607–1614. doi:10.1093/jxb/erg170

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama A, Takeuchi M, Ueno S, Mitsuda H (1990) Enhancement of the division of Equisetum arvense protoplasts in culture by activated charcoal and their further development. Plant Cell Physiol 31:999–1004

    CAS  Google Scholar 

  • Kuriyama A, Kawata K, Kawai F, Kanamori M, Watanabe K, Maeda M (1997) Changes in the yield of protoplast from cryopreserved rice suspension cells. Jpn J Crop Sci 66:133–134

    Google Scholar 

  • Langis R, Steponkus PL (1991) Vitrification of isolated Rye protoplasts: protection against dehydration injury by ethylene glycol. Cryo Letters 12:107–112

    CAS  Google Scholar 

  • Leopold AC, Bruni F, Williams RJ (1992) Water in dry organisms. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life. Springer, Berlin, pp 161–169

    Google Scholar 

  • Liu H, Yu W, Dai J, Gong Q, Yang K, Lu X (2004) Cryopreservation of protoplasts of the alga Porphyra yezoensis by vitrification. Plant Sci 166:97–102. doi:10.1016/j.plantsci.2003.08.014

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nag KK, Street HE (1973) Carrot embryogenesis from frozen cultured cells. Nature 245:270–272. doi:10.1038/245270a0

    Article  Google Scholar 

  • Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206. doi:10.1016/0168-9452(92)90151-B

    Article  CAS  Google Scholar 

  • Niino T, Hirai D, Matsumoto T, Tanaka D (2006) Cryopreservation of plant cells and organs. National Institute of Agrobiological Sciences, Tsukuba

    Google Scholar 

  • Paulet F, Engelmann F, Glaszmann J (1993) Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp. Hybrids) using encapsulation/dehydration. Plant Cell Rep 12:525–529. doi:10.1007/BF00236101

    Article  Google Scholar 

  • Robertson AJ, Gusta LV, Reaney MJT, Ishikawa M (1987) Protein synthesis in Bromegrass (Bromus inermis Leyss) cultured cells during the induction of frost tolerance by abscisic acid or low temperature. Plant Physiol 84:1331–1336. doi:10.1104/pp.84.4.1331

    Article  PubMed  CAS  Google Scholar 

  • Sala F, Cella R, Rollo F (1979) Freeze-preservation of rice in suspension culture. Physiol Plant 45:170–176. doi:10.1111/j.1399-3054.1979.tb01682.x

    Article  CAS  Google Scholar 

  • Senaratna T, Mckersie BD, Bowley SR (1989) Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos. Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci 65:253–259. doi:10.1016/0168-9452(89)90072-1

    Article  CAS  Google Scholar 

  • Shimanishi K, Ishikawa M, Suzuki S, Oosawa K (1991) Cryopreservation of melon somatic embryos by desiccation method. Jap J Breed 41:347–351

    Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584. doi:10.1146/annurev.pp.35.060184.002551

    Article  CAS  Google Scholar 

  • Sugawara Y, Hashimoto K (2003) Vitrification of cultured plant cells and tissues at ambient temperatures. Cryobiol Cryotechnol 49:171–174

    Google Scholar 

  • Sugawara Y, Mori K, Matsushima M, Takeuchi M (1983) Enhancement of cell. division in Marchantia protoplast culture by activated charcoal. Z Pflanzenphysiol 109:275–278

    CAS  Google Scholar 

  • Sun WQ, Leolodd AC (1995) The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol Plant 94:94–104. doi:10.1111/j.1399-3054.1995.tb00789.x

    Article  CAS  Google Scholar 

  • Sun WQ, Leopold AC (1997) Cytoplasmic vitrification acid survival of anhydrobiotic organisms. Comp Biochem Physiol Physiol 117:327–333. doi:10.1016/S0300-9629(96)00271-X

    Article  Google Scholar 

  • Takeuchi M, Matsushima H, Sugawara Y (1980) Long-term freeze-preservation of protoplasts of carrot and Marchantia. Cryo Letters 1:519–524

    CAS  Google Scholar 

  • Takio S, Kajita M, Takami S, Hino S (1986) Establishment and growth characterization of suspension cultures of cells from Barbula unguiculata. J Hattori Bot Lab 60:407–417

    CAS  Google Scholar 

  • Towill LE (2002) Cryopreservation of plant germplasm: introduction and some observations. In: Towill LE, Bajaj YPS (eds) Cryopreservation of plant germplasm II. Springer, Berlin, pp 3–21

    Google Scholar 

  • Uemura M, Steponkus PL (1989) Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol 91:1131–1137. doi:10.1104/pp.91.3.1131

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (2003) Modification of the intracellular sugar content alters the incidence of freeze-induced membrane lesions of protoplasts isolated from Arabidopsis thaliana leaves. Plant Cell Environ 26:1083–1096. doi:10.1046/j.1365-3040.2003.01033.x

    Article  CAS  Google Scholar 

  • Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9:328–331. doi:10.1007/BF00232862

    Article  Google Scholar 

  • Vertucci CW, Roos EE (1990) Theoretical basis of protocols for seed storage. Plant Physiol 94:1019–1023. doi:10.1104/pp.94.3.1019

    Article  PubMed  Google Scholar 

  • Vertucci CW, Roos EE (1993) Theoretical basis of protocols for seed storage II. The influence of temperature on optimal moisture levels. Seed Sci Res 3:201–213

    Google Scholar 

  • Vertucci CW, Roos EE, Crane J (1994) Theoretical basis of protocols for seed storage III. Optimum moisture contents for pea seeds stored at different temperatures. Ann Bot (Lond) 74:531–540. doi:10.1006/anbo.1994.1151

    Article  Google Scholar 

  • Walters C, Touchell DH, Power P, Wesley-Smith J, Antolin MF (2002) A cryopreservation protocol for embryos of the endangered species Zizania texana. Cryo Letters 23:291–298

    PubMed  Google Scholar 

  • Wettlaufer SH, Leopold AC (1991) Relevance of Amadori and Maillard products to seed deterioration. Plant Physiol 97:165–169. doi:10.1104/pp.97.1.165

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Leopold AC (1989) The glassy state in corn embryos. Plant Physiol 89:977–981. doi:10.1104/pp.89.3.977

    Article  PubMed  Google Scholar 

  • Xiao L, Koster KL (2001) Desiccation tolerance of protoplasts isolated from embryos. J Exp Bot 52:2105–2114

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported partly by the Research Institute for Technology of Tokyo Denki University under Grant Q05E-08 and the Frontier Research and Development Center of Tokyo Denki University under Grant 07FZ03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kuriyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, H., Ayabe, K., Ishii, R. et al. Desiccation and cryopreservation of actively-growing cultured plant cells and protoplasts. Plant Cell Tiss Organ Cult 97, 151–158 (2009). https://doi.org/10.1007/s11240-009-9509-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9509-y

Keywords

Navigation