Skip to main content

Advertisement

Log in

Transcriptomic analysis reveals the role of a peptide derived from CRYAB on the CoCl2-induced hypoxic HL-1 cardiomyocytes

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Acute myocardial infarction (AMI) is a life-threatening disease that often results in heart failure. CRYAB, a small heat shock protein, has been shown to have cardioprotective effects against oxidative stress-induced apoptosis in AMI. Previously, we purified a peptide derived from CRYAB (LEDQFFGEH), which we named PDFC. In this study, we determined the function of PDFC on HL-1 cardiomyocytes and explored the mechanism underlying its function. A hypoxic myocardiocyte cell line was generated by stimulation of HL-1 mouse cardiac muscle cells with different concentrations of CoCl2. Then, the hypoxic HL-1 cells were treated with the synthetic PDFC peptide, and cell proliferation, migration, and apoptosis were assessed to examine the effects of PDFC on HL-1 and hypoxic HL-1 cells. To examine the mechanism underlying the effects of PDFC on hypoxic cells, PDFC-treated hypoxic HL-1 cells were submitted for deep RNA sequencing. Finally, several differentially expressed genes in different pathways were selected for confirmation by RT-qPCR. Hypoxic myocardiocytes were generated by stimulating HL-1 cells with 800 µM CoCl2 for 24 h, which significantly upregulated HIF-1α. PDFC at 200 µg/ml showed the most positive effects on cell viability. Although hypoxic HL-1 cells and PDFC-treated hypoxic HL-1 cells both showed lower viability and migration and higher levels of apoptosis than untreated HL-1 cells, compared to hypoxic HL-1 cells, PDFC-treated hypoxic HL-1 cells showed higher viability and migration and lower apoptosis. The deep sequencing showed that 812 genes were upregulated and 1946 genes were downregulated. Among these differentially expressed genes, 699 of the upregulated genes and 1488 of the downregulated genes were protein-coding genes. Gene ontology and pathway enrichment analysis showed that the downregulated genes were dominant and that the PI3K-Akt pathway was located in the center of the network. A protein–protein interaction network was constructed, and 892 nodes were determined. In PDFC-treated hypoxic HL-1 cells, Fn1, Pik3r5, and Creb5 were downregulated, while Insr, Bcl2, Mapk14, and Pten were upregulated when compared to the levels in hypoxic HL-1 cells. In conclusion, this study reveals the significant bioactive effect of the CRYAB-derived peptide, PDFC on cardiomyocytes and the underlying mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sacks NC, Ash AS, Ghosh K, Rosen AK, Wong JB, Rosen AB (2015) Trends in acute myocardial infarction hospitalizations: are we seeing the whole picture? Am Heart J 170:1211–1219

    Article  PubMed  PubMed Central  Google Scholar 

  2. Plakht Y, Shiyovich A, Gilutz H (2015) Predictors of long-term (10-year) mortality postmyocardial infarction: age-related differences. Soroka acute myocardial infarction (SAMI) project. J Cardiol 65:216–223

    Article  PubMed  Google Scholar 

  3. Shahzad S, Hasan A, Faizy AF, Mateen S, Fatima N, Moin S (2018) Elevated DNA damage, oxidative stress, and impaired response defense system inflicted in patients with myocardial infarction. Clin Appl Thromb Hemost 24:780–789

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad G, Agarwal A, Esteves SC et al (2017) Ascorbic acid reduces redox potential in human spermatozoa subjected to heat-induced oxidative stress. Andrologia 49:e12773

    Article  CAS  Google Scholar 

  5. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med 48:749–762

    Article  CAS  Google Scholar 

  6. Dimauro I, Antonioni A, Mercatelli N, Caporossi D (2018) The role of alphaB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones 23:491–505

    Article  PubMed  Google Scholar 

  7. Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–16063

    Article  CAS  PubMed  Google Scholar 

  8. Morrison LE, Hoover HE, Thuerauf DJ, Glembotski CC (2003) Mimicking phosphorylation of alphaB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis. Circ Res 92:203–211

    Article  CAS  PubMed  Google Scholar 

  9. Mao YW, Liu JP, Xiang H, Li DW (2004) Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:512–526

    Article  CAS  PubMed  Google Scholar 

  10. Xu F, Yu H, Liu J, Cheng L (2013) AlphaB-crystallin regulates oxidative stress-induced apoptosis in cardiac H9c2 cells via the PI3K/AKT pathway. Mol Biol Rep 40:2517–2526

    Article  CAS  PubMed  Google Scholar 

  11. Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi K, Murphy E, Robbins J (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112:3451–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bullard B, Ferguson C, Minajeva A et al (2004) Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem 279:7917–7924

    Article  CAS  PubMed  Google Scholar 

  13. Rajasekaran NS, Connell P, Christians ES et al (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130:427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fouillen L, Petruzziello F, Veit J, Bhattacharyya A, Kretz R, Rainer G, Zhang X (2013) Neuropeptide alterations in the tree shrew hypothalamus during volatile anesthesia. J Proteom 80:311–319

    Article  CAS  Google Scholar 

  15. Rahman MM, Neupert S, Predel R (2013) Neuropeptidomics of the Australian sheep blowfly Lucilia cuprina (Wiedemann) and related Diptera. Peptides 41:31–37

    Article  CAS  PubMed  Google Scholar 

  16. Faridi P, Aebersold R, Caron E (2016) A first dataset toward a standardized community-driven global mapping of the human immunopeptidome. Data Brief 7:201–205

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK (2001) Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. FASEB J 15:393–402

    Article  CAS  PubMed  Google Scholar 

  18. Adhikari AS, Singh BN, Rao KS, Rao ChM (2011) alphaB-crystallin, a small heat shock protein, modulates NF-kappaB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-alpha induced cytotoxicity. Biochem Biophys Acta 1813:1532–1542

    Article  CAS  PubMed  Google Scholar 

  19. Wu L, Li H, Li X, Chen Y, Zhang Q, Cheng Z, Fan Y, Qian L, Song G (2017) Peptidomic analysis of cultured cardiomyocytes exposed to acute ischemic-hypoxia. Cell Physiol Biochem 41:358–368

    Article  CAS  PubMed  Google Scholar 

  20. Cheng CI, Lee YH, Chen PH, Lin YC, Chou MH, Kao YH (2017) Cobalt chloride induces RhoA/ROCK activation and remodeling effect in H9c2 cardiomyoblasts: Involvement of PI3K/Akt and MAPK pathways. Cell Signal 36:25–33

    Article  CAS  PubMed  Google Scholar 

  21. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  22. Yu G, Wang LG, Han Y, He QY (2012) ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2

    Article  Google Scholar 

  25. Chen R, Xu J, She Y, Jiang T, Zhou S, Shi H, Li C (2018) Necrostatin-1 protects C2C12 myotubes from CoCl2-induced hypoxia. Int J Mol Med 41:2565–2572

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xie MJ, Chang H, Wang YY, Zhang L, Song Z, Guo WG, Wang T, Che HL, Yu ZB (2010) Evidence that apoptotic signalling in hypertrophic cardiomyocytes is determined by mitochondrial pathways involving protein kinase Cdelta. Clin Exp Pharmacol Physiol 37:1120–1128

    Article  CAS  PubMed  Google Scholar 

  27. Griffiths ER, Friehs I, Scherr E, Poutias D, McGowan FX, Del Nido PJ (2010) Electron transport chain dysfunction in neonatal pressure-overload hypertrophy precedes cardiomyocyte apoptosis independent of oxidative stress. J Thorac Cardiovasc Surg 139:1609–1617

    Article  CAS  PubMed  Google Scholar 

  28. Choudhury S, Bae S, Kumar SR, Ke Q, Yalamarti B, Choi JH, Kirshenbaum LA, Kang PM (2010) Role of AIF in cardiac apoptosis in hypertrophic cardiomyocytes from Dahl salt-sensitive rats. Cardiovasc Res 85:28–37

    Article  CAS  PubMed  Google Scholar 

  29. Riba A, Deres L, Eros K, Szabo A, Magyar K, Sumegi B, Toth K, Halmosi R, Szabados E (2017) Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure. PLoS ONE 12:e0175195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li DW, Liu JP, Mao YW et al (2005) Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol Biol Cell 16:4437–4453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu Z, Li R, Stricker R, Reiser G (2015) Extracellular alpha-crystallin protects astrocytes from cell death through activation of MAPK, PI3K/Akt signaling pathway and blockade of ROS release from mitochondria. Brain Res 1620:17–28

    Article  CAS  PubMed  Google Scholar 

  32. King AM, MacRae TH (2015) Insect heat shock proteins during stress and diapause. Annu Rev Entomol 60:59–75

    Article  CAS  PubMed  Google Scholar 

  33. Tang S, Yin B, Song E, Chen H, Cheng Y, Zhang X, Bao E, Hartung J (2016) Aspirin upregulates alphaB-Crystallin to protect the myocardium against heat stress in broiler chickens. Sci Rep 6:37273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitra A, Basak T, Datta K, Naskar S, Sengupta S, Sarkar S (2013) Role of alpha-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell Death Dis 4:e582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736

    Article  CAS  PubMed  Google Scholar 

  36. Brady JP, Garland DL, Green DE, Tamm ER, Giblin FJ, Wawrousek EF (2001) AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42:2924–2934

    CAS  PubMed  Google Scholar 

  37. See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S, Krum H (2004) p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 44:1679–1689

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, Wu S, Zhu L, Cai J, Fu L (2017) Hydrogen-containing saline alleviates pressure overload-induced interstitial fibrosis and cardiac dysfunction in rats. Mol Med Rep 16:1771–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamamoto S, Yamashita A, Arakaki N, Nemoto H, Yamazaki T (2014) Prevention of aberrant protein aggregation by anchoring the molecular chaperone alphaB-crystallin to the endoplasmic reticulum. Biochem Biophys Res Commun 455:241–245

    Article  CAS  PubMed  Google Scholar 

  40. den Engelsman J, Bennink EJ, Doerwald L, Onnekink C, Wunderink L, Andley UP, Kato K, de Jong WW, Boelens WC (2004) Mimicking phosphorylation of the small heat-shock protein alphaB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. Eur J Biochem 271:4195–4203

    Article  CAS  Google Scholar 

  41. Zhu ZR, He Q, Wu WB, Chang GQ, Yao C, Zhao Y, Wang M, Wang SM (2018) MiR-140-3p is involved in in-stent restenosis by targeting C-Myb and BCL-2 in peripheral artery disease. J Atheroscler Thromb 25:1168–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ye Q, Tian GP, Cheng HP et al (2018) MicroRNA-134 promotes the development of atherosclerosis via the ANGPTL4/LPL pathway in apolipoprotein E knockout mice. J Atheroscler Thromb 25:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Long B, Li N, Xu XX, Li XX, Xu XJ, Guo D, Zhang D, Wu ZH, Zhang SY (2018) Long noncoding RNA FTX regulates cardiomyocyte apoptosis by targeting miR-29b-1-5p and Bcl2l2. Biochem Biophys Res Commun 495:312–318

    Article  CAS  PubMed  Google Scholar 

  44. Wang N, Feng Y, Xu J, Zou J, Chen M, He Y, Liu H, Xue M, Gu Y (2018) miR-362-3p regulates cell proliferation, migration and invasion of trophoblastic cells under hypoxia through targeting Pax3. Biomed Pharmacother 99:462–468

    Article  CAS  PubMed  Google Scholar 

  45. Li W, Liang J, Zhang Z, Lou H, Zhao L, Xu Y, Ou R (2017) MicroRNA-329-3p targets MAPK1 to suppress cell proliferation, migration and invasion in cervical cancer. Oncol Rep 37:2743–2750

    Article  CAS  PubMed  Google Scholar 

  46. Fuentes N, Roy A, Mishra V, Cabello N, Silveyra P (2018) Sex-specific microRNA expression networks in an acute mouse model of ozone-induced lung inflammation. Biol Sex Differ 9:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Vegter EL, Ovchinnikova ES, Sillje HHW et al (2017) Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure. PLoS ONE 12:e0177242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Pande M, Bondy ML, Do KA, Sahin AA, Ying J, Mills GB, Thompson PA, Brewster AM (2014) Association between germline single nucleotide polymorphisms in the PI3K-AKT-mTOR pathway, obesity, and breast cancer disease-free survival. Breast Cancer Res Treat 147:381–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang M, Li Y, Wang H, Yu W, Lin S, Guo J (2018) LncRNA SNHG5 affects cell proliferation, metastasis and migration of colorectal cancer through regulating miR-132–3p/CREB5. Cancer Biol Ther 20(4):524–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Riehle C, Abel ED (2016) Insulin signaling and heart failure. Circ Res 118:1151–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bi YM, Wu YT, Chen L et al (2018) 3,5-Dicaffeoylquinic acid protects H9C2 cells against oxidative stress-induced apoptosis via activation of the PI3K/Akt signaling pathway. Food Nutr Res. https://doi.org/10.29219/fnr.v62.1423

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Natural Science Foundation of China (Grant No. 81601297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingai Zhu or Zhangbin Yu.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, H., Li, M. et al. Transcriptomic analysis reveals the role of a peptide derived from CRYAB on the CoCl2-induced hypoxic HL-1 cardiomyocytes. J Thromb Thrombolysis 51, 265–276 (2021). https://doi.org/10.1007/s11239-020-02117-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-020-02117-4

Keywords

Navigation